UGA

Pour obtenir le grade de Université
. Grenoble Alpes
DOCTEUR DE L'UNIVERSITE GRENOBLE ALPES P

Ecole doctorale : MSTII - Mathématiques, Sciences et technologies de I'information, Informatique
Spécialité : Informatique
Unité de recherche : Laboratoire de conception et d'intégration des systémes

Compilation pour la sécurité matérielle : au-dela de la sémantique
Compilation beyond semantics for hardware security

Présentée par :

Sébastien MICHELLAND

Direction de thése :

Laure GONNORD Directrice de these
PROFESSEURE DES UNIVERSITES, Grenoble INP - UGA
Christophe DELEUZE Co-encadrant de thése
MAITRE DE CONFERENCES, Grenoble INP — UGA

Rapporteurs :
Karine HEYDEMANN
SECURITY SENIOR EXPERT (HDR), Thalés CDI
Jens GUSTEDT
DIRECTEUR DE RECHERCHE, Centre Inria de I'Université de Lorraine

These soutenue publiquement le 24 octobre 2025, devant le jury composé de :
Isabelle PUAUT, Présidente
PROFESSEURE DES UNIVERSITES, Université de Rennes
Laure GONNORD, Directrice de these
PROFESSEURE DES UNIVERSITES, Grenoble INP - UGA
Karine HEYDEMANN, Rapporteure
DOCTEURE EN SCIENCES HDR, Thalés DIS
Jens GUSTEDT, Rapporteur
DIRECTEUR DE RECHERCHE, Centre Inria de I'Université de Lorraine
Marie-Laure POTET, Examinatrice
PROFESSEURE DES UNIVERSITES EMERITE, Grenoble INP - UGA
Albert COHEN, Examinateur
DIRECTEUR DE RECHERCHE, Google
Daniel GRUSS, Examinateur
UNIVERSITY PROFESSOR, Graz University of Technology

Invités :

Christophe DELEUZE
MAITRE DE CONFERENCES, Grenoble INP — UGA

Remerciements

Je tiens a remercier en premier lieu Laure, a qui je dois non seulement cette thése mais aussi
mon engouement pour la compilation et pour 'enseignement. La these est une expérience
humaine autant que scientifique, et tu as été précieuse sur tous les plans.

Merci également a Christophe pour ton encadrement ancré dans la réalité qui m’a sauvé de
quelques idées folles. Parfois le TikZ est superflu et ’ASCII art est bien suffisant.

Merci a Karine et Jens pour la relecture de ce document et votre enthousiasme extrémement
valorisant, ainsi qu’a Isabelle, Marie-Laure, Albert et Daniel pour votre participation a mon
jury ; j’ai beaucoup apprécié vos questions minutieuses sur ces travaux dont je suis fier.

Les idées de cette thése doivent beaucoup aux discussions informelles avec notamment
Francois DE FERRIERE, Thomas RuBIANO, Basile PEsIN et Benjamin GAUDIN ; et elles sont
directement construites sur les travaux brillants et inspirants d’lhab ALSHAER et Son TuAN Vu.

Un grand merci a tous mes collegues : Marie et Arthur D. pour nos mémes et les gateaux, Clara
pour ton enthousiasme, Valentin pour nos parties d’échecs, Julien pour cette JDD de tous les
temps, Yann pour les aventures fonctionnelles, Daniel pour la musique... et bien d’autres.

Rien de tout cela n’aurait été possible sans les IATS du LCIS, notamment Carole, Caroline,
Johanna, Patricia, Marie et Arthur ; toute notre recherche repose sur vos efforts quotidiens.

Je gage que ni Antonin DUDERMEL, ni Alban REYNAUD, ni Antoine DOMENECH n’auront anticipé
que les peluches qui animaient nos cours a ’ENS de Lyon animeraient aussi nos théses. Merci
a vous et aux supers collegues de promotion, Victor, Aymeric, Bastien, et tous les autres que je
laisserai se reconnaitre par manque de place. L’informatique est fun grace a vous.

Des remerciements du fond du coeur aux étudiant-es de I’Esisar, entre autres les P2026 et
P2027, pour les super moments passés en cours. Quand au TP de C débutant on voit du Vulkan
et du JIT, on n’a pas une seconde pour s’embéter. Zoé, Julien, vous étes géniales.

J’ai enfin eu ’honneur d’héberger sur mon tableau un projet d’ampleur de plus d’un an, par
Arthur BAUDET, Laure GONNORD, Stéphanie CHOLLET et Zoé LAGACHE, qui ont collectivement
chamboulé le paysage de la programmation en établissant ’équation suivante :

A.B. _. AB. L.G. A.B. A.B. . AB. s.C. s.C. Z.L.
C < Zig < Perl < Ocaml < Vlang < Javascript < HTML < CSS < SQL < C

Et c’est bien 1a, chére Lectrice, 'ultime succés de mes efforts. Au cas toutefois ou ce thoréme
vous soit déja familier, j’adjoins ci-aprés quelques autres résultats mineurs de mon travail.

Yy ol

Zen rides onwards to more science. There be compilers!

Résumeé

Les systémes informatiques sont construits par couches pour limiter leur complexité. Par
exemple, le logiciel et le matériel sont globalement indépendants ; ils s’accordent sur une
interface commune appelée « assembleur », et ensuite ignorent (s’abstraient) chacun des
détails internes de I'autre. Cette construction décompose élégamment le systéeme en éléments
simples et est omniprésente en informatique ; il y a d’ailleurs une dizaine de ces couches
d’abstraction entre le logiciel utilisé pour visualiser ce document et les lois fondamentales de la
physique. Cependant, les interfaces successives entre couches n’isolent que les fonctionnalités,
et pas par exemple les performances... ou la sécurité.

Les injections de faute sont des attaques matérielles qui induisent des comportements anor-
maux (fautes) en interférant volontairement avec des circuits (signaux, alimentation, champs
électromagnétiques, etc.—tous les coups sont permis). Elles représentent une menace majeure
pour les systémes embarqués qui va au-dela de simples fautes aléatoires dues a des défauts de
fabrication : ce sont des attaques ciblées qui peuvent exploiter méme les faiblesses mineures
dans un systéeme. Et comme les abstractions ne se préoccupent pas de la sécurité, les con-
tremesures ne peuvent pas étre décomposées en couches ; elles doivent tenir compte de tout
le systeme d’un seul coup, ce qui est sensiblement plus difficile.

De fait, il est déja difficile de couvrir les couches logicielles, allant du code applicatif haut-
niveau typiquement écrit en C au code assembleur. Il est connu que compiler des programmes
peut détruire les parties logicielles des contremesures de sécurité. Par exemple, pour sécuriser
on peut faire les calculs sensibles en double et vérifier qu’il n’y a pas eu d’erreur causée par
une faute ; le compilateur, ignorant la menace de sécurité, supprimera les doublons (jugés
inutiles) pour optimiser les performances du programme. Cette relation antagoniste fait de la
compilation sécurisée un deuxiéme domaine de I'informatique ou des générateurs de texte
produisent des résultats fonctionnellement valides mais fondamentalement inadéquats.

Cette these analyse cette friction entre les contremesures de sécurité (principalement contre
les injections de faute) et la compilation de code C. J’y démontre que les menaces envers le
code de sécurité sont inhérentes a la descente en abstraction et ne peuvent pas étre esquivées
juste en désactivant les optimisations, avec une analyse détaillée dans le cas du compilateur
LLVM. J’expose également de multiples subtilités sémantiques qui rendent des certifications
formelles improbables pour les primitives de sécurité dans un compilateur de production, ce
qui motive une approche expérimentale.

La production centrale de la these est Tracing LLVM, une surcouche libre légere pour LLVM
qui enrichit I'interface entre le code et le compilateur pour faciliter I'implémentation de
contremesures de sécurité. J’illustre ces extensions sur une palette d’exemples et montre qu’on
peut les composer pour obtenir un controle fin sur le code généré tout en écartant la majorité
des menaces provenant des optimisations et descentes en abstraction. Au centre de cet outil
est un systéme de « tracé » permettant de connecter des éléments du programme source avec
les programmes intermédiaires, ce qui aide les contremesures a naviguer la pile d’abstraction.

Ces contributions au développement de la compilation sécurisée ouvrent des portes pour
faciliter la co-conception logicielle/matérielle des mécanismes de défense contre les attaques
matérielles et consolider leur sécurité.

Abstract

Computer systems are built in layers to contain their complexity. For instance, software
and hardware are mostly independent; they simply agree on a common interface called an
“assembler” programming language, and then ignore (abstract away) each other’s internal
details. This brilliantly breaks down the system in manageable pieces and is used extensively;
in fact, the program visualizing this document is probably a dozen such abstraction layers
away from the fundamental laws of physics. However, these successive layers only abstract
away the system’s functionality, not other aspects like its performance... or its security.

Fault injections are hardware attacks that induce abnormal behaviors (faults) by interfering
with circuits (through signals, power, electromagnetic fields, or otherwise—anything goes).
They pose a major threat to embedded systems that’s not just random defect-induced faults
but targeted, engineered attacks that can slip through even minor cracks in a system. And
since abstractions don’t cover security, countermeasures can’t be broken down into layers
and need to cover the entire system at once, which is significantly more challenging.

In fact, just covering the software layers, spanning from high-level application code typically
in C to assembler code, is difficult. It is well understood that compiling programs can destroy
the software components of security countermeasures. For instance, it makes sense to run
sensitive computations twice to check for errors induced by faults, but a compiler will proudly
delete the duplicates, which are redundant in its functional-only abstract semantics. This
adversarial relationship makes compiling for security a second field of computer science that
struggles over generating text that is functionally valid yet substantially inadequate.

This thesis analyzes this friction between security countermeasures against hardware attacks
(mostly fault injections) and the compilation of C code. | show that the threats to security
code are inherent to the descent in abstraction and can’t simply be dodged by disabling
optimizations, with a detailed breakdown in the case of the widely-used production compiler
LLVM. I also highlight many of the semantic subtleties that lie between security primitives and
formally-provable security properties, motivating an experimental approach to the problem.

The central production of the thesis is Tracing LLVM, a lightweight open-source extension of
LLVM which enriches the interface between program and compiler to facilitate the implemen-
tation of security countermeasures. | demonstrate these extensions on a variety of examples
and show that they can compose to great effect, providing fine control over generated code
while eliminating most threats from lowerings and optimizations. Key to this proposition
is a new “tracing” system that assists in maintaining a connection between the source and
intermediate programs, which helps countermeasures navigate the abstraction stack.

These contributions constitute a significant step towards security-aware compilation, which
opens co-design opportunities and promising reliability improvements for defense mechanisms
against these tricky hardware attacks.

Contents

Remerciements

Résumé

Abstract

1

3

Introduction

1.1 Hardware security e
1.2 Modern C compilers, LLVM IR, and RISC-V
1.3 Contributionandoutline,
1.4 Dissemination e e e e e e e

Incompleteness in the security stack
2.1 Quick overview of fault and side-channel models
211 Faultmodels
2.1.2 Side-channelmodels
2.2 Broad categories of security properties oL
2.3 Techniques and design of hardening compilation
2.3.1 Hardening at every level in the toolchain
2.3.2 High-level design considerations
2.3.3 Overview of security modeling and proof
2.4 Preserving security in the compilation chain
241 Compiler interference threatening security properties
2.4.2 Techniques for property preservation
24.3 Afew certified security properties o L.
244 Preserving generic properties Lo
2.5 Traceability in compilation oo L
2.6 Software/hardware co-design L oL
2.6.1 Improving performance oo
2.6.2 Addressing micro-architectural fault models
2.6.3 Enriching the interface layer between software and hardware
2.7 Chapterconclusion e

The vision: threading security through abstractions

3.1 Targets of interest in the security process
3.1.1 Delimit uncertainties to facilitate unit validation
3.1.2 Account for high-level security requirements
3.1.3 Facilitate software/hardware co-design

3.2 Distribution of responsibilities oo

3.3 The compiler as the cornerstone of hardening
331 Modelofasecurebuild oo L.
3.3.2 Potential for integration with the rest of the toolchain

10
11
13
16
17

19
20
20
21
22
24
24
27
29
30
30
31
34
34
35
36
36
36
36
37

5

3.3.3 Lackof language support L Lo 44

34 Examplesandusecases 44
3.4.1 Strict variableaccesses L Lo 45
3.4.2 Sequencing at variablewrites o0 000 47
3.4.3 Avoid optimizations during lowerings 43
3.4.4 Map source variables toregisters L Lo L. 51
3.45 Cleanup sensitive registers 52
3.4.6 Splitregisterallocation. L L L. 53
3.5 Discussionof theexampleso 54
3.5.1 End-to-end management of security 54
3.5.2 Threats from lowerings rather than optimizations 54
3.6 Chapterconclusion 55
Countermeasures at the lowest levels of software 56
41 Formalizing fetch skips 57
41.1 Informal description of RISC-V programs 57
4.1.2 Informal description of fetch skips 59
4.1.3 Operational semantics of RISC-V programs with fetch skips 60
4.2 A co-designed countermeasure 63
4271 Overview 63
4.2.2 ISA and hardware extensions Lo oL 64
4.2.3 Hardening algorithmo 65
424 LLVMimplementation Lo L oL 67
425 Discussion e 68
4.3 Security theorem 69
4.3.1 Security guarantee against multi-fault executions. 70
4.3.2 Security guarantee against single-fault executions 70
4.4 Implementation setting and evaluation L0 0 L 71
4.41 Implementation and experimental setting 71
4.4.2 Functional correctness o oo 72
4.4.3 Security guarantee L. L o e 72
444 Performance 73
45 Chapterconclusion 74
Writing countermeasures with Tracing LLVM 76
51 Tracing LLVM o 0 e 76
5.1.1 Project description L. 76
5.1.2 Overview of the main features 77
5.2 Feature descriptions 78
5.21 Opacification function Lo L. 79
5.2.2 Wrapperinstructions L oL o 80
523 Tracedtypes. 81
524 Tracingvariables L 82
5.25 Tracingdataflow 83
526 Wrapperlowering e 84

5.2.7 Register allocation for tracing
5.3 Examplesandusecases e
5.3.1 Strict variableaccesses L oL
5.3.2 Sequencing at variablewrites L L
5.3.3 Avoid optimizations during lowerings
5.3.4 Map source variables toregisters Lo L
5.3.5 Cleanup sensitive registers
5.3.6 Split register allocation.
5.4 Application to a full PIN verification program
54.1 Initial sourcecode L oL o oo
5.4.2 Countermeasures inserted and failed initial build
5.4.3 Secure build using Tracing LLVM features
544 DiscussSion L e e e
5.5 Chapterconclusion

Implementation and integration of Tracing LLVM

6.1 Working in LLVM e
6.1.1 Constraintsand targets,
6.1.2 Maintenance and research tools

6.2 Existing non-functional featuresin LLVM L0 L.
6.21 Debuginformation Lo o
6.2.2 Inlineassembly L
6.23 Hacks e

6.3 Techniques to extend or constrain representations
6.3.1 Intended language extensions L L.
6.3.2 States allowed by API not exploited by implementation
6.3.3 Constrained shapes within existing languages
6.3.4 Divert existing features Lo L L

6.4 Summary of changes madeto LLVM L.

6.5 Chapterconclusion

Outline of guarantees and validation methods

7.1 Scope and tools for validation
7.2 Properties desired from opacificationo
7.3 Transformations weakening opacification guarantees
7.4 Summary of expectations and threats for opacification
7.5 Assumptions underlying the design of Tracing LLVM
7.6 Chapter conclusion

Conclusion and future work

Proof of the fetch skips hardening theorem

A.1 Detailed instruction semantics Lo oL

A.2 Hardening algorithm and proof of security
A.2.1 Additional definitionsonblocks oL,

98

98

98

99
100
100
101
102
103
104
104
105
105
106
106

108
108
110
112
117
118
120

121

Bibliography

A2.2
A23
A.2.4
A.2.5

Feasibility of Algorithm HARDEN
Structure of hardened programs,
Program state upon leaving a hardened block
Security guarantees L o Lo

List of Figures, Tables and Listings

Index

137

149

151

Introduction

Benjamin Lee Whorf (1897-1941),
American linguist and chemical engineer

Image credit:
The Hartford Agent Magazine/Benjamin Lee Whorf Papers,
Manuscripts and Archives, Yale University Library (ID 10009314)

[though the core conclusions from this thesis all relate to programming languages,

| have it on good authority that spoken languages have been around a bit longer

than modern programming ones. Maybe | shouldn’t have been surprised, then, to

find elements of linguistic theory that share striking similarities with the rest of this
document. Here’s my modest attempt at establishing this relationship.

There is a concept in linguistics that language doesn’t just describe our perception of reality,
but also influences it; that our constant use of language for classifying and communicating the
world warps our perceptions so they fall neatly into what our spoken language can describe.
This principle is commonly associated with Benjamin Lee Whorf [Who97], popularized by
quotes such as “Language shapes the way we think” (though he did not invent it).

This notion of has been the subject of intense debate. The idea is often split into two separate
flavours [Cha94]; the strong linguistic determinism hypothesis that our thinking is determined
by language, and the weak linguistic relativity hypothesis that language influences our per-
ception and interpretation of the world. Nowadays, there appears to be a general agreement
against the strong hypothesis, while the weak one remains debated.

One might wonder whether linguistic relativity applies to programming languages (after all,
programming and linguistics often intersect, such as with the theories of grammar and parsing).
Well there is, indeed, no shortage of testimony that varied programming paradigms lend
themselves to equally varied formalizations of real-world problems, influencing developers’
intuitive models and solutions. Jenna Zeigen addresses this question in a talk [Jen14] where
she casts a mould of linguistic relativity around Paul Graham’s “Blub Paradox” (from his
talk-then-essay “Beating the Averages” [Gra01]).

One important distinction is that Whorf aimed to “calibrate” spoken languages such as English
and Hopi with each other, allowing translations between their differing perceptions of the same

1.1. HARDWARE SECURITY 11

reality. On the other hand, Zeigen’s and Graham’s discussion is underpinned by the claim
that there is an order of power in programming languages, and that this order is abstraction;
Graham writes, “if you have a choice of several languages, it is, all other things being equal, a
mistake to program in anything but the most powerful one”.

In this thesis | explore problems related to security, which, as it turns out, makes all other
things very much not equal. Studying programming languages and their compilation under
the lens of non-functional requirements forces us to capture the complexity of the entire
language stack. So there is no single language to solve hardware security, let alone high-level.

In essence, my central claim is that low-level security concerns escape the modeling power
of high-level programming languages, which only capture a chosen subset of functionality.
Each lower abstraction level may attempt to cast the threat into a form that the next level
can perceive accurately and counter. But on a basic level, the technical framework of coun-
termeasures against hardware vulnerabilities is defined by the strong principle of linguistic
determinism applied to computing abstractions, each being constrained in its perception of
the threat by its limited ability to model the system.

1.1. Hardware security

Computer systems today are built in layers. We start with transistors on a chip and create
logic gates and memories. From then on, we forget about the transistors, and directly use the
gates and memories to create processors. We gradually go higher by building more abstract
stages on the interfaces of lower stages. At some point, we start writing software in the
processor’s assembly language while ignoring the processor’s implementation. Eventually, we
forget the assembler too and write programs in “high-level” programming languages like C
that we compile to assembler automatically. Each new layer is an abstraction of the previous,
hiding tedious implementation details while providing more expressive tools for building
complex systems.

This design has many advantages, chief among which is breaking down the complexity
of computers over multiple fields of engineering. Hardware designers can change micro-
architectures, and so long as they use the same assembly language, existing software will keep
working, stabilizing the work of software engineers. This is why | can write the dot product
function of Listing 1.1 in C and be confident it’ll run on pretty much anything.

long dot(int *x, int *y, size_t n) {
long result = 0;
for(size_t i = @; i < n; i++)
result += x[i] * y[i];
return result;
} /* did you spot the bug? */

Listing 1.1: Integer dot product function in C

There are limits, of course; each stage is designed to abstract the functionality of lower stages,
but can’t guarantee other properties, called “non-functional”, such as performance and security.

12 CHAPTER 1. INTRODUCTION

Looking at Listing 1.1 again, the C language specifies exactly what the multiplication operator
computes, but not how long it takes to produce its result. The performance characteristics of
the program depend greatly on the processor’s implementation.

Thus, systems with non-functional requirements cannot rely on abstractions alone and must
be aware of internal software and hardware details. This thesis is concerned with the particular
case of hardware security vulnerabilities, which come in two flavours.

Fault injection attacks are physical attacks that deliberately cause faults in the system.
A fault is any abnormal condition that leads to incorrect behavior. Traditionally the threat
of faults was limited to manufacturing defects or extreme operating conditions (famously
illustrated with cosmic rays flipping bits in avionics), but the development of fault injection
techniques [She+21] made them an explicit attack vector.

On Listing 1.1, a typical fault attack might lead to an assembler instruction being skipped.
Depending on the precise assembler code, this could skip a product, an accumulation step, use
a wrong operand somewhere, end the loop early, extend it, use data or run code from other
functions, and many other effects. This variety is a key reason why fault attacks constitute a
significant threat. Occasionally a particularly impactful fault attack reaches the mainstream
public, like Rowhammer [Kim+14] which had the rare ability to target servers remotely.

Side-channel attacks are attacks that exploit sensitive information extracted from a system
without compromising its execution. A side-channel is any observable physical or functional
property of the system that is correlated with its internal operations, like timing, power
consumption, or all sorts of internal processor state that can be observed indirectly.

Again with Listing 1.1, the multiplication instruction on the targeted processor might be
faster for small inputs, allowing attackers to learn information about the values of x and y by
measuring execution times. If either of the arrays contains secret data, this would constitute
a severe breach of confidentiality. Side-channel attacks also frequently go mainstream, like
the haunting legacy of Spectre’s [Koc+19] speculative execution leaks, or more recently when
Apple processors’ aggressive optimizations led to the GoFetch vulnerability [Che+24].

This combination of factors—extreme non-functionality and endless physical variations—
makes hardware vulnerabilities particularly difficult to deal with. No one I’ve met entertains
the notion of a complete defense against known attacks, let alone future ones. Obviously this
expectation of incompleteness doesn’t preclude the study and deployment of countermeasures,
but it makes any guarantees about behaviors or coverage that much more valuable.

Figure 1.2 shows the process for designing a countermeasure against a fault attack, which will
be our main use case. Just like how functional abstractions are spread over different fields of
specialty, modeling vulnerabilities and designing countermeasures involves experts at many
levels of the system.

Injection modeled Fault countered Counter- ensures Security
. —_— —_— —_—> .
campaigns by models by measures properties

Figure 1.2: Usual process for countering a fault injection attack

1.2. MoDERN C coMPILERS, LLVM IR, AND RISC-V 13

1. First, hardware experts run injection campaigns with appropriate equipment and collect
faulted execution traces.

2. Then they formulate a fault model that summarizes the most common effects and describes
them at a higher level of abstraction.

3. From there, hardware or software engineers devise mechanisms for nullifying, detecting,
or recovering from the attack, which can be in hardware, in software, or both.

4. Deploying the countermeasure then guarantees that a specific security property holds even
when attacked, typically some sort of integrity or confidentiality requirement.

The main challenge at the moment remains providing countermeasures that are effective
against attacks without large performance or resource overheads. The rapid improvement of
attacks means that protections are often not yet secure enough [Yuc+16]—sometimes funda-
mentally insufficient [Ran23]—all while the industry of embedded systems puts a premium
on cost-effectiveness. My work tackles two aspects of the reliability objective: countering
accurate fault models, and eliminating friction around the compilation of countermeasures.

1.2. Modern C compilers, LLVM IR, and RISC-V

A central part of this thesis is understanding and improving the interactions between compilers
and security countermeasures. A compiler is a tool that translates programs from a high-level
programming language to another, lower-level programming language. In the context of
embedded systems, engineers will most commonly write their software in C then compile it
to assembler so it can be run on real hardware.

C is not a particularly high-level programming language; it may well be the lowest among
those used to write large-scale applications. Developers can often predict what assembler code
a compiler is likely to generate, leading to a sense that the compiler produces “the” assembler
code for any given C program'. However, modern compilers only guarantee that they’ll output
some assembler program whose functionality matches the C source, with no guarantees on
its specific implementation, performance or security.

This rewriting process takes the program through multiple intermediate languages which
were introduced over the years either for optimization or software engineering purposes. Opti-
mizing compilers are generally centered around one internal language called the Intermediate
Representation or IR (sometimes multiple of them). This naturally leads into a separation of
the compiler into three different stages, shown in Figure 1.3:

C LLVM IR RISC-V
Source Front-end Intermediate = Back-end .
—_— . ——> Binary
program Representation
Middle-end

Figure 1.3: Bird’s-eye view of compilation stages

"For a notable example, consider https://www.youtube.com/watch?v=MShbP30pASA&t=21m58s.

https://www.youtube.com/watch?v=MShbP3OpASA&t=21m58s

14 CHAPTER 1. INTRODUCTION

LLVM IR code (simplified) Control-flow graph
define 132 @dot(ptr %x, ptr %y, i32 %n) { entry D
entry:

%empty = icmp eq 132 %n, @ loop :i)
br i1 %empty, label %end, label %loop ¢
end —>
loop:
%i = phi 132 [%new_i, %loopl, [0, %entry]

%result = phi 132 [%nhew_result, %loop], RISC-V assembler code

[0, %entry] dot:
%xiptr = getelementptr 132, ptr %x, i32 %i # a0 is x, al is y, a2 is n
%xi = load 132, ptr %xiptr, align 4 1i a3, o
%yiptr = getelementptr 132, ptr %y, 132 %i beqz a2, .end
%yi = load 132, ptr %yiptr, align 4 .loop:
%xiyi = mul 132 %xi, %yi 1w a4, 0(a0d) # ad = *x
%new_result = add 132 %xiyi, %result 1w ab, @(al) # ab = *y
%new_i = add 132 %i, 1 mul a4, a5, a4
%exit = icmp eq 132 %new_i, %n add a3, a3, a4
br i1 %exit, label %end, label %loop addi a2, a2, -1 # n-—-
addi al, al, 4 # y++
end: addi a0, a0, 4 # x++
%res = phi i32 [0, %entry], bnez a2, .loop
[%new_result, %loop] .end:
ret i32 %res mv a0, a3
3 ret # returns ao

Figure 1.4: Dot product: LLVM IR code, control-flow graph, and RISC-V code

the front-end, which rewrites the source into the intermediate representation;

the middle-end, which optimizes the intermediate representation;

and the back-end, which finally rewrites the program into target code.

The steps that rewrite the program into a lower-level language or representation are called
lowerings. We’ll encounter a few more when delving into LLVM’s back-end (Figure 5.2).

In our case, the source code is C and the target code is RISC-V assembler, but the design is
intended to allow any supported source language to be compiled to any supported target
language, by exploiting the same shared middle-end logic, which is the core of the compiler.
(Although, when it comes to security, all components will be about equally as relevant.)

LLVM’s intermediate representation is called LLVM IR. Figure 1.4 (left) shows the (simplified)
LLVM IR code for the dot product function after the front-end and middle-end have run.
Unlike C functions, LLVM IR functions do not have nested control-flow structures; they
consist of a flat list of basic blocks (here entry, loop and end). Each basic block is made of a
sequence of straight-line instructions, ending either in a jump to another block, a conditional
branch to two other blocks, or a function return. This induces a Control-Flow Graph (CFG)
whose nodes are the basic blocks and edges are the possible jumps and branches between
them, also shown in Figure 1.4 (top right).

1.2. MoDERN C coMPILERS, LLVM IR, AND RISC-V 15

A key feature of LLVM IR is that it is in Static Single Assignment (SSA) form [RT22]. This
means that every variable in the function is assigned only once; intuitively speaking, a second
assignment would be considered a new variable. If there are conditional assignments, multiple
“versions” of the same variable can reach a given control point. For instance, on Figure 1.4
when entering the loop body on line 7, i might be 0 (if we came from the entry block) or from
the incremented value %new_i generated by the previous iteration (if we came from the loop
body). This kind of conflict is reconciled using a special phi operator which redefines the
variable based on the control path at runtime. Essentially, the SSA form determines what
versions of variables are visible to each statement and encodes it explicitly. We won’t see
much of phi in this thesis, but the splitting aspect in worth keeping in mind.

Other than its specific format using SSA in a control-flow graph, LLVM IR mostly resembles
three-address code annotated with types (i32 being 32-bit integers and i1 being booleans).
The LLVM IR code we’ll see will focus on basic instructions such as memory loads (1oad) or
arithmetic (add, xor, etc.). For more detail, please see the LLVM language reference’.

Figure 1.4 also shows the RISC-V assembler code produced by the compiler’s back-end (bottom
right). RISC-V is an open-standard Instruction Set Architecture®; for our purposes, it mostly
defines an extensible assembler language. It is a fairly standard RISC architecture; for the
purpose of reading this thesis, the following aspects of 32-bit RISC-V are relevant:

« The main registers are ad—a7 (arguments, caller-saved/scratch), to-t6 (temporaries, caller-
saved/scratch) and s0-s11 (saved, callee-saved/permanent).

« Special registers mostly include the return address ra and stack pointer sp.

« Output operands, if any, come first.

« The notation “of f(reg)” refers to the memory address or operand at reg+off.

« Arguments are passed in a@, a1, etc.; the return value is a@.

The following instructions will make an appearance:

« Moving values: mv (MoVe), 1i (Load Immediate);

« Memory accesses: 1w (Load Word), sw (Store Word), 1bu (Load Byte Unsigned);

+ Unconditional control-flow: j[r] (Jump [Register]), call, ret;

« Conditional control flow: beq (Branch if EQual), beqz (Branch if EQual to Zero), and
variations with other two-letter comparison codes;

« The usual arithmetic: add, mul, xor, etc.

The assembler code for the dot product function should hopefully be straightforward. Note
however how the logic differs from the IR code; i has been eliminated, instead the pointers
x and y (a0 and al) are incremented at each iteration, and the counting is performed by
decrementing n (a2) directly.

This example already illustrates some misconceptions about compilation. A user invoking
LLVM would provide the C code as input and obtain the RISC-V assembler as output, and
might assume that result was simply mapped to register a3, setting up the expectation that
a single C variable would reasonably be assigned to a single register. However, the IR code

2https://1lvm.org/docs/LangRef . html
Shttps://riscv.org/. RISC stands for “Reduced Instruction Set Computer”.

https://llvm.org/docs/LangRef.html
https://riscv.org/

16 CHAPTER 1. INTRODUCTION

hidden inside the compiler reveals that this is not the case, as both assignments to result are
considered different variables. The fact that both end in a3 is not random, but it’s also not
guaranteed (and we’ll see it in action later).

This kind of discrepancy severely limits programmers’ ability to incorporate security counter-
measures in programs or ensure that they get compiled in a satisfying manner. It’s emblematic
of the tension between functionality-oriented compiler design, and the real but unmodeled
threats that countermeasures attempt to defeat. Fortunately, there are a few things we can
do about that.

1.3. Contribution and outline

This thesis addresses the general problems of designing countermeasure for low-level attack
models, and improving the reliability of secure code generation with a compiler.

Chapter 2 surveys the methods for writing security countermeasures in software, with a focus
on compiler integration. Its main point is that approximations in fault models combined with
semantic subtleties in countermeasures make it hard to obtain strong guarantees, and that
compiler “tricks” are insufficient.

Chapter 3 lays out my vision for improving the reliability of fault injection countermeasures,
from design to implementation and validation (on the software side). This consists of two
axes: (1) exploiting the lowest-level attack models possible, and (2) improving the reliability of
secure compilation. It also contains examples demonstrating typical security violations that
arise from compilation.

Chapter 4 addresses the first axis by demonstrating the use of semantic modeling to capture
low-level effects in a fault injection countermeasure. In this chapter, | develop, implement,
and validate a software/hardware co-designed countermeasure against a tricky attack model
called fetch skips. The countermeasure builds upon a semantic model and | formally prove its
security in Appendix A.

Chapter 5 and onwards address the second axis by describing different aspects of Tracing
LLVM, my LLVM mod that extends languages and compiler to facilitate the implementation
of security countermeasures. Chapter 5 describes Tracing LLVM from the perspective of
a countermeasure developer, illustrates how it solves the examples from Chapter 3, and
showcases a combination of four countermeasures on a longer PIN verification example.

Chapter 6 takes a short dive into the research questions that arise from the implementation
of Tracing LLVM, mainly relating to language design and maintainability. These choices are
key to extracting guarantees out of LLVM extensions without requiring complete knowledge
of its multi-million-line codebase.

Finally, Chapter 7 takes a critical look at the interface between the compiler and the security
assumptions made by countermeasures to prepare for a proper formalization in future work. |
discuss the goals that such an interface should achieve, then illustrate the delicate rift between
experimentally-predictable behaviors and formal guarantees with a series of theoretical but
legal security-breaking program transformations.

1.4. DISSEMINATION 17

Chapter 8, as one would expect, wraps up by summarizing the contributions and lays out
future work for this project.

What to read?

« If you want to understand Tracing LLVM’s design and how to use it, read Chapters 3 and 5.
« For the research questions surrounding secure compilation, read Chapters 3 and 5 to 7.

« For countermeasures, read Chapter 4 (free-standing) or Chapters 3 and 5 (Tracing LLVM).

Chapter 2 provides valuable context but is not a hard dependency of other chapters; any
relevant terms that it defines for later are listed in the index at the end of the document.
The index collects definitions for the most common terms as well as thematic references for
recurring concepts.

1.4. Dissemination

The proven countermeasure from Chapter 4 was the subject of a publication and presentation
at the Compiler Construction conference of 2024 (CC’24) [MDG24]:

« Sébastien Michelland, Christophe Deleuze, and Laure Gonnord. “From low-level fault
modeling (of a pipeline attack) to a proven hardening scheme”. In: Compiler Construction
(CC’24). Edinburgh (Scotland), United Kingdom, Mar. 2024.

DOI: 10.1145/3640537.3641570. URL: https://hal.science/hal-04438994.

At the time of submitting the final version of this document, the Tracing LLVM bases described
in Chapters 5-7 are cycling the submission pipeline; they have however been showcased at
the international Workshop on the Principles of Secure Compilation of 2026 [MDG26].

« Sébastien Michelland, Christophe Deleuze, and Laure Gonnord. “Compiling Countermea-
sures Against Fault Attacks with Tracing LLVM”. In: Workshop on Principles of Secure
Compilation (PriSC’26). Rennes, France. Jan. 2026.

URL: https://popl26.sigplan.org/details/prisc-2026-papers/8.

This thesis is related to the PEPR project ARSENE? (« Architectures Sécurisées pour le Numérique
Embarqué », or “Secure Architectures for Embedded Computing”) which aims to design
sovereign secure platforms for embedded systems with a RISC-V base. The ARSENE project is
funded by the “France 2030” government investment plan managed by the French National
Research Agency, under the reference ANR-22-PECY-0004.

The state-of-the-art from Chapter 2 is based on a deliverable from the ARSENE project (reusing
only the sections that | personally wrote).

| gave a number of talks on the subject of secure compilation:

« At the 2024 Journée thématique sur les Attaques par Injection de Fautes (JAIF) workshop
(Rennes, France);

« At the 2025 PHISIC workshop (Gardanne, France);

« At French national community meetings: Journées GLsec (Paris, Nov. 2022), Journées du
GDR Sécurité (Caen, June 2025);

*https://www.pepr-cyber-arsene.fr/

https://doi.org/10.1145/3640537.3641570
https://hal.science/hal-04438994
https://popl26.sigplan.org/details/prisc-2026-papers/8
https://jaif.io/2024/
https://phisic.fr/2025/
https://glsec22.sciencesconf.org/
https://gdr-secu-jn2025.sciencesconf.org/
https://gdr-secu-jn2025.sciencesconf.org/
https://www.pepr-cyber-arsene.fr/

18 CHAPTER 1. INTRODUCTION

« At a number of local seminars: CASH team (Lyon, Feb. 2024), ANSSI (March 2024), the
Verimag lab (Grenoble, April 2024), CyberAlps seminar (Grenoble, May 2024), SemSécuElec
seminar (Rennes, Sept. 2024), EPICURE team (Rennes, Sept. 2024), PACAP team (Rennes,
April 2024) and finally Verimag again (Grenoble, June 2025).

In parallel to the work described in this document, | also completed a previous research project
relating to the modeling of static analyzers in monadic semantics. This work was published and
presented at the 2024 Internal Conference on Functional Programming (ICFP’24) [MZG24]:

« Sébastien Michelland, Yannick Zakowski, and Laure Gonnord. “Abstract Interpreters: A
Monadic Approach to Modular Verification”. In: Proceedings of the ACM on Programming
Languages 8.ICFP (Aug. 2024), pp. 1-28.

DOI: 10.1145/3674646. URL: https://hal.science/hal-04628727.

This avenue of research is related to hardware security through its potential for formal
verification, which other brilliant people have started to explore [Pes+25].

https://www-verimag.imag.fr/Details-sur-le-seminaire.html?sem_id=930
https://seminaires-dga.inria.fr/en/securite-elec/
https://www-verimag.imag.fr/Details-sur-le-seminaire.html?sem_id=968
https://doi.org/10.1145/3674646
https://hal.science/hal-04628727

Incompleteness in the security stack

oftware protections against hardware vulnerabilities face a variety of challenges. This

chapter covers the state-of-the-art of these software components, with an emphasis

on countermeasures against fault injection attacks. The particular angle | want to

highlight is how the challenges in defeating attacks manifest in the incompleteness of
protections. This highlights why any guarantees are really valuable and motivates the focus
of this thesis in improving reliability.

Approaches Use lowest-level Semantics and secure compilation
in this thesis models possible l l
C Injection modeled ~ Fault countered Counter- ensures Security
omponents . —_— _— s .
campaigns by models by measures properties
o Future Inherently Weaknesses Lack of
Limitations . . . e
evolutions approximate in edge cases specification
Aggravating Multi-fault Targeted
factors injections attacks

Figure 2.1: Limitations in the process for countering fault attacks

Figure 2.1 extends Figure 1.2 with the main hurdles in designing countermeasures against
fault injection attacks.

« As before, injection campaigns are first run to sample execution traces. This analysis needs
continuous updates as the set of faults that can be reliably injected by attackers keeps
evolving.

+ The fault model is then formulated; by construction it ignores rarer outcomes, and lifts the
fault’s description to a higher level of abstraction. Both effects lose real outcomes (and may
introduce unrealistic ones), so the attack being protected against isn’t quite the real attack.

« The step of building countermeasures doesn’t have inherent weaknesses, but it’s difficult to
design protections that are complete even in edge cases. Broadly speaking due to community
fragmentation countermeasures either counter accurate low-level models, or are formalized
and proven, but rarely both.

« And a minor point, there is no unified framework for expressing security properties. They
are often under-specified, with functional correctness as the implicit default.

20 CHAPTER 2. INCOMPLETENESS IN THE SECURITY STACK

These hardships are compounded by aggravating factors such as multi-fault injections (which
add to the variety of attack methods and seriously complicate modeling) and targeted attacks
(which may turn any single weakness into a serious vulnerability).

With this in mind, let’s explore how literature deals with software contributions to this field.
Starting with the requirements, Section 2.1 reviews usual attack models and Section 2.2
lists and attempts to categorize common targeted security properties. Section 2.3 covers the
design of countermeasures, including their placement in the compiler and an overview of
proof methods. Section 2.4 explores in more depth the problem of preserving security during
compilation, which is tightly related to matters of traceability addressed in Section 2.5. | end
with an overview of co-designed countermeasures in Section 2.6.

2.1. Quick overview of fault and side-channel models

Fault injection techniques are quite varied: some methods require contact on pins, such as
clock/voltage glitches or body bias; some don’t, like laser/X-ray pulses or electromagnetic
interference. In this thesis, | only consider transient faults, which cause incorrect behaviors
but do not actually damage the target (as opposed to permanent faults). The interested reader
is referred to Shuvo et al. [Shu+23] for a more thorough listing.

Side-channels are similarly diverse; attackers can target programs’ execution time [Koc96;
HWH13; RG24], power consumption over time [Man03], or even electromagnetic emis-
sions [QS01; SLS19]. All sorts of micro-architectural state affected by speculation is also
a target, commonly categorized under the umbrella of Spectre [Koc+19] (and, to a lesser ex-
tent, Meltdown [Lip+20]). Leaks can further be analyzed over multiple executions by statistical
methods for improved precision; such techniques include Correlation Power Analysis [BCO04]
or Differential Power Analysis [K]J99; Wan+17].

In both cases the complexity of the attacks calls for simplified models to smooth out the
physical details and lift possible outcomes to higher abstraction levels. A single attack can
be approximated by many models; generally speaking a higher-level model is easier to study
and counter but a lower-level model better describes the possible outcomes of the attack.
Note that approximations go both ways: they remove real behaviors (leading to worse protec-
tions) but also add fictional ones (leading to more expensive protections). Chapter 4 of this
thesis will advocate for using the lowest-level models we can handle to avoid irrecoverable
approximations.

2. 1.1 Fault models «...oooooniiiii
The following are common fault models, roughly sorted by decreasing abstraction level.

At source level:

« “Statement skip”: skip a C statement (also confusingly called “instruction”);
« Branch inversion: a conditional statement’s targets are swapped [Pot+14];
« Corrupted control flow: arbitrary jumps in a function [HLB19]; calls to invalid targets...

At assembler/ISA level:

2.1. QUICK OVERVIEW OF FAULT AND SIDE-CHANNEL MODELS 21

« Instruction skip/re-execution: an instruction is either skipped or executed twice [VHMO03];

« Branch inversion: targets of a conditional branch instruction are swapped;

+ Bus corruption: data read or written corrupted en route on the CPU/memory bus [DSL17].

« Wrong CFG edges: a branch instruction jumps to the start of an arbitrary block in the
function CFG, even if there was no CFG edge there [HLB19];

« PC corruption: bit flip or other types of corruption of the PC register;

« Architectural SEU (Single Event Upset): bit flip in an architectural component, like a
register [Bar+14b], memory location, or instruction opcode;

At lower levels:

« Forwarding error: pipeline forwarding triggers when it shouldn’t or doesn’t when it
should [Lau20];

« Fetch skip and skip-and-repeat: skip or repeat a CPU fetch’s worth of code data (e.g. 4
bytes), leading to a single or multiple instructions decoding incorrectly [Als+21];

« Low-level SEU (Single Event Upset): bit flip in RTL latches [Tol+22];

« Partial or delayed update: an RTL register has only part of its bits updated, or it updates
a cycle later than it should [Als+24];

« Transistor failure: a transistor assumes a semi-permanent state [Anc+17].

For each of these models, one can also consider multi-fault variations where more than one
fault may occur. Generally speaking, multiple simultaneous faults greatly increase the burden
of modeling while multiple faults spread over time mostly complicates countermeasures.

The term “soft error” was also frequently used in early works to describe any potential mis-
execution of a program, but the interpretation of the term tends to vary from one publication
to the next. It often ends up meaning a Single Event Upset (SEU, bit flip) but the abstraction
level at which the SEU is considered still isn’t always clear.

The chosen abstraction level for models is a clear accuracy-versus-simplicity trade-off; low-level
descriptions are more true to practical attacks, but high-level approximations make it practical
(in many cases possible) to reason about and protect against them. As it turns out, ISA-level
models aren’t always precise enough; faulted behaviors often depend on micro-architectural
features and can only be described accurately by including hardware details [Lau+18]. Pipeline
analysis by Yuce et al. [Yuc+16] further shows that targeted fault attacks can and do defeat
many ISA-level countermeasures by exploiting unmodeled low-level effects. In other words,
finer, more accurate countermeasures are still needed.

2.1.2. Side-channel MoOdels ..o e e e e

While not a focus of this thesis, side-channel models serve the same purpose as fault models.
Like faults, leaks of secret information can be difficult to analyze as they can be hidden by
complex correlations. [Mar18] explains how countermeasures and other signal noises designed
to defend against power analysis can be circumvented using different techniques including
multidimensional probabilistic representation [CRR03; Arc+06].

Simple examples would be the Hamming Weight [Bel+13] and Hamming Distance models for
power analysis. The Hamming weight model states that an attacker can observe the number

22 CHAPTER 2. INCOMPLETENESS IN THE SECURITY STACK

of 1-valued bits in a piece of data. This is based on the fact that 1 bits in RAM are charged
capacitors that need to be refreshed often; as a result, the power consumed to refresh the RAM
is proportional to the number of 1 bits. Similarly, the Hamming distance model states that an
attacker can determine the number of bits that flipped values between two observations of a
single piece of data. This is relevant for storage elements that consume most of their energy
not over time but when their stored value changes. In both cases, the model formalizes a
statistical correlation between power consumption and the program’s data by accounting for
implementation details of the storage.

Models can also functionally capture non-functional properties like timing. For instance, RSA
algorithms spend most of their time in modular exponentiation, and naive implementations
perform varying numbers of modular multiplications depending on the value of the secret
keys. This leads to a timing attack that observes the number of multiplications and thus part
of the secret key [Koc96], which can be studied functionally.

However, at low levels of abstraction, non-functional elements tend to dominate. For example,
timings can leak through instructions’ interrupt latency [WMP21], data-dependent power
policy (like Hertzbleed [Wan+22] monitoring Dynamic Voltage and Frequency Scaling), or
just through speculative decisions not reflective of the program’s code [Che+24].

So faults and side-channel models indicate how attackers may disturb or observe the system.
The other piece of the puzzle for countermeasures is what needs protecting in the application.

2.2. Broad categories of security properties

Security properties formalize high-level security objectives such as confidentiality, integrity, or
availability by specifying them within a given language or execution environment. There is
no unified framework for this formalization, which leads to subtle variation between works;
generally more so for properties related to fault tolerance compared to side-channels.

[want to draw attention to the fact that not all properties can be expressed at the same levels
of abstraction: some are inherently low-level; some are high-level but may not translate well
to low-level programs; a few are somewhat universal. This variety doesn’t help with deriving
a unified formalism.

Functional correctness. The most common security property is functional correctness': the
requirement that the program behaves as per its original semantics even when attacked. It’s
the natural target for fault tolerance (although hard to reach!), and is implicit in many early
works like SWIFT [Rei+05]. Side-channels never break it as they don’t modify executions.

Partial functional correctness. Most countermeasures detect faults after the program
runs into an incorrect state. When no recovery is possible countermeasures allow erroneous
outcomes, such as explicit termination, countermeasure-specific signals, or simply crashes.
This idea of partial correctness generally comes with guarantees that the program stops
“quickly” after an attack (with a suitable bound on the delay). This can satisfy security

TCompiler people call this “safety”, but here safety is security for non-targeted/random attacks.

2.2. BROAD CATEGORIES OF SECURITY PROPERTIES 23

requirements when only chosen parts in a program are sensitive, such as the password check
before the entry to a privileged section. For instance, NEMESIS [DSL17] detects attacks and
stops the program when it’s unable to recover.

Countermeasures against fault injections have a strong tendency to default to functional cor-
rectness as the only security property. | suspect this happens because of the field’s background
in fault tolerance (i.e. safety against faults), where there is no attacker and incorrect behavior
is the only threat. Although not as obvious, fault injections can be used to threaten availability
or confidentiality all the same. In any case, for fault-related works that do not explicitly
provide a security property, some form of (partial) functional correctness should be assumed.

Control flow integrity (CFI). Control flow integrity is a family of properties about the
integrity of execution paths taken by programs at runtime. They can appear at multiple levels:

« Within a function’s CFG. Most commonly, control flow integrity refers to control following
only valid edges of a function’s control flow graph. Theifing et al. [The+13] list a number of
countermeasures that achieve variations of this property with different types of checks.

« Within a sequential block. Instruction skips or arbitrary jumps might impact the execution
of a sequential block (SSA basic block, C compound statement, or otherwise). Control flow
integrity at this level is the property that all statements execute exactly in the source order.

« For a whole program. Control flow integrity can also extend to the inter-procedural level,
requiring control to follow edges of the call graph much in the same way as a function’s
CFG edges [De 19].

Specialized forms of CFl. Weaker types of CFl may also be relevant:

« Computation order: the requirement for sensitive pure computation to occur in source order,
such as refreshing the mask on a secret value. (See general literature on the analysis of
masking, e.g. Prouff and Rivain [PR13]; the algorithms are very sensitive in general.)

« Interleaving: the CFl sub-scheme Step Counter Incrementation [HLB19] performs regular
checks of a CFl witness value (the Step Counter) within sequential blocks. To be effective,
the scheme requires the checks not be reordered relative to surrounding source code.

Data erasure. The property that a given piece of data is unavailable in program memory at
certain control points. This is tricky to do because almost every abstraction level redefines
data storage in a way that allows previous values to remain in internal state that’s functionally
invisible, which requires control of low-level systems such as CPU registers. This problem
occurs independently in many systems, such as in redundant file-system storage [ORK18].

Non-interference. A common security property?, non-interference formalizes data confi-
dentiality as the absence of dependence from a sensitive input to an observable output. The
sensitive input may be functional, for instance when studying the influence of secrets on
the statistical distributions of observable probes in a program [Bar+16]. It can also be non-
functional, like micro-architectural state, which can often be observed indirectly and may
require system-level support to eliminate [Bar+14a].

2More specifically, a hyperproperty, since it is defined by quantifying over multiple executions.

24 CHAPTER 2. INCOMPLETENESS IN THE SECURITY STACK

The constant-time property. The constant-time property is a ubiquitous non-interference
property for timing side-channel resistance. It is usually defined as the absence of secret-
dependent branches (observable by timing) or memory accesses (observable via cache). This
characterization is surprisingly very functional as it can be studied at all abstraction levels
between C and assembler, but has limits in the context of modern Spectre-style attacks
because they reveal many more micro-architectural details [Cau+20]. When discussed at low
levels “constant-time” may also exclude some secret-dependent computations on processors
with e.g. variable-delay multiplication or division [Gau+23].

2.3. Techniques and design of hardening compilation

After starting mostly as source transformations in the early days of fault tolerance, counter-
measures now consistently involve automatic transformation in compilers. Manual source
protections do exist, most notably constant-time cryptographic implementations, but this
practice doesn’t scale to entire systems, other attack models, or non-functional security prop-
erties. Involving toolchains allows automated protection tuned to each attack model or target
device, and gives access to internal program representations for transformation.

2.3.1. Hardening at every level in the toolchain

Depending on the type of countermeasure (and thus attack model and targeted security
property), any stage of the compilation chain might be involved in hardening, as shown by
Figure 2.2. However, I’d like to underline that no single level provides all desirable properties
for countermeasures; usually either fine control of assembly or source annotations is missing.
Works discussed in this section are summarized in Table 2.3, sorted by publication year.

Source-to-source

hardening Middle-end hardening Back-end hardening Binary rewriting
Source Front-end Intermediate Codegen Emitter :
_— . Back-end IR ———— Binary
program Representation Linker
Stage visible by user Stage internal to compiler

Figure 2.2: Common compilation stages for hardening

Source-to-source hardening. Countermeasures can be inserted by rewriting the source
program (usually C) before compiling it.

Rebaudengo et al. [Reb+01] show an early example, targeted against transient memory errors,
but claimed applicable to a wider range of transient faults. Their translation tool ThOR features
standard transformations like duplicating variables, statements and function arguments; only
returning from functions by address so return values can be duplicated; and control-flow
integrity in the form of signature checks and duplicated conditions.

2.3. TECHNIQUES AND DESIGN OF HARDENING COMPILATION 25

Cite Scheme Toolchain Hardening stage Attack model

[Reb+01] ThOR N/A Source-to-source “everything” (tests SEUT)
[VHMO03] ACFC gcc Preprocessor Ins. skip/re-exec (multi-fault)
[Rei+05] SWIFT OpenIMPACT Assembler SEUT

[CRA06] SWIFT-R gcc 3.4.1 (PowerPC) Early back-end SEUT

[CRA06] TRUMP gcc 3.4.1 (PowerPC) Early back-end SEUT

[CRAO6] MASK gcc 3.4.1 (PowerPC) Early back-end SEUt

[Lid+12] ROSE:FTTransform N/A Source-to-source “everything” (tests SEUT)
[Bay+13] Sleuth LLVM/Klee Back-end Leak info on ins. outputs
[BCR16] unnamed LLVM 3.6 (ARM) Back-end Instruction skip

[DS16] nZDC LLVM 3.7 (ARMv8-a) Late back-end SEUT, “soft errors”
[DSL17] NEMESIS LLVM 3.7 (ARMv8-a) Late back-end SEUT, wrong load/store
[Pro+17] unnamed LLVM 4.0 (ARM) Back-end (SSA IR) Ins. skip, reg. corruption
[Boh+18] COAST LLVM (MSP430) Late middle-end ~ SRAM bit flip

[Van+18] RACFED unknown Back-end CFG Bit flip in PC

[De 19] SecSwift LLVM Mostly middle-end Multiple control/data attacks
[HLB19] unnamed N/A Source-to-source Wrong/random jumps
[AA19] Smokestack LLVM 3.9 Middle-end (+ libs) Data-Oriented Programming
[Kia+21] unnamed LLVM (lifting) Binary rewriting ~ SEUT, instruction skip
[WMP21] unnamed (Secure)LLVM 13.0 Back-end Leak interrupt delay
[Gei+23] CompaSeC COMPAS (LLVM) Back-end Multi instruction skip
[Pes+25] unnamed Chamois CompCert Middle-end (RTL) Branch inversion transition

TSEU: Single Event Upset (single bit flip in registers, memory, micro-architectural components...)

Table 2.3: Sample of hardening schemes implemented in or around a compiler

Lidman et al. [Lid+12] describe a recovery scheme for large-scale computing systems where
they expect fault tolerance to allow undervolting machines for efficiency. Their countermeasure
ROSE::FTTransform (implemented in the source-to-source compiler framework ROSE [QL11])
runs computations up to IV times and selects results based on configurable policies.

More recently, Heydemann, Lalande, and Berthomé [HLB19] provide a verified CFl coun-
termeasure against intra-procedural jumps or wrong function calls in C code. They use
signature-based CFl with step counter incrementation to track the progress of each block,
which can detect any jumps of at least two statements regardless of block size. Signatures are
chosen globally (each function having a unique signature interval) so the scheme can also
detect inter-procedural control flow faults.

The main benefit of source-to-source hardening is of course portability, while the crucial
drawback is that the compiler can drastically alter security measures while compiling. This
approach provides next to no control over assembly code and often requires disabling opti-
mizations, which is slow and increases attack surface due to the larger code size.

Compiler middle-end. Being the quintessential transformation pipeline in optimizing com-
pilers, the middle-end is a natural choice for hardening.

Bohman et al. [Boh+18] evaluate an LLVM IR implementation of the Var3 scheme [Chi+12],
called COAST, against neutron irradiation. Their countermeasure can duplicate or triplicate
registers, computations and memory operations (but not control flow, although the implemen-

26 CHAPTER 2. INCOMPLETENESS IN THE SECURITY STACK

tation also independently supports CFCSS [OSM02]). Functional redundancy is typical for
middle-end countermeasures, which don’t have access to target-specific information. Despite
the high cost, COAST causes a 7x mean-work-to-failure increase in the radiation setup.

SecSwift [De 19] implements slightly less usual transformations; it rewrites functions’ pro-
totypes to duplicate parameters and return values (which effectively modifies the ABI) and
supports a dual intra-/inter-functional CFl scheme with signatures. The countermeasure is
protected against back-end optimizations with intrinsics (I’ll come back to that) and results in
close to 100% coverage on random injection experiments.

Middle-end hardening can run after most optimizations while benefiting from typically supe-
rior documentation and language formalism than back-end representations. However, it can’t
easily relate to either source code or architectural details and still leaves all assembly code
control to back-end algorithms.

Compiler back-end and beyond. Countermeasures against low-level attack models are
commonly implemented near the back-end, close to hardware.

Winderix, Miihlberg, and Piessens [WMP21] close an interrupt-based side-channel that leaks
the execution times of instructions on simple microcontrollers. The countermeasure equalizes
the traces of all possible control flow paths in the program with no-ops and silent copies of
functions. This pass couldn’t be performed before the back-end because earlier representations
don’t fix specific instruction traces; it can also hardly be performed on binaries directly due to
the difficulty of inserting large amounts of new code in linked programs.

NEMESIS [DSL17] is a back-end triplication countermeasure inspired by SWIFT-R [CRA06],
which uses three instruction streams as reference, error detection, and recovery respectively. |
believe it covers all bit flips in registers, memory address corruptions, and memory operand
corruptions, although its claim of detecting all “soft errors” has some openings.” NEMESIS
has very detailed widgets and notably protects silent writes (no-op writes where the value
written is also the value stored) against address corruption, which can’t be detected by the
usual precaution of re-reading written values.

My fetch skips countermeasure detailed in Chapter 4 [MDG24] reached the linker through
ELF relocations. The scheme involves computing a checksum of assembly code, whose final
encoding is not decided until the linker assigns explicit addresses to symbols. This could be
performed on executables directly but only if it doesn’t interact with any other relocation. I’ll
discuss more co-designed back-end countermeasures in Section 2.6.

Back-end hardening is the go-to choice for any countermeasure that handles low-level details
and is quite effective as long as no source input is needed. Owing to the complexity of
modern back-ends, most intra-functional transformations can be performed there, although
the compiler’s pipeline may be limiting.*

3In particular, it mentions instruction corruption as a potential threat, but changing the target register of an
instruction can corrupt two execution streams at once. This leads, for example, to an attack that skips a memory
write if the program writes the same value to memory multiple times, like e.g. memset () would do.

*For example, in LLVM adding new code becomes impossible sometime before reaching assembly.

2.3. TECHNIQUES AND DESIGN OF HARDENING COMPILATION 27

Binary rewriting. A popular conservative approach is to rewrite output binaries; this by-
passes the compiler and doesn’t require access to source code.

Wenzl et al. [Wen+19] survey the mechanics of binary rewriting for different applications,
including hardening against (mostly software) attacks. In each case, the binary is first analyzed
using disassembly and structural recovery; it is then modified and reassembled using standard
tools, sometimes even a production compiler. The survey highlights important variations in
the analysis steps, as there doesn’t appear to be popular widely-adopted tools in this area
apart from reverse-engineering frameworks (IDA’, radare2°, etc.).

Binary rewriting isn’t limited to simple transformations. Abromeit et al. [Abr+21] implement
a masking countermeasure against side-channel attacks that observe secret-dependent data.
This substitutes a number of elementary instructions with masking-compatible implemen-
tations known as gadgets, which requires moving some data to the stack and inserting calls
to the gadgets. The paper performs these tasks almost entirely from an off-the-shelf binary,
requiring only source-level annotations to identify secret variables.

One limitation of binary rewriting countermeasures is that program reconstruction is funda-
mentally incomplete, so despite working well in practice it’s hard to prove their security. Kiaei
et al. [Kia+21] argue that binary rewriting works best when lifting higher, and illustrate a
lifting to LLVM IR to harden in the middle-end before essentially recompiling. Unsurprisingly,
when compiler support is possible (and interference can be ruled out, see Section 2.4), it is
more straightforward to harden as a compilation pass.

Custom compilers. Custom compilers may have specific provisions for hardening. For
example, Jasmin [Alm+17] is a language and compiler for cryptographic implementations. It
eliminates some conceptual overheads of C by giving the programmer finer control, such as
in memory allocation: variables are explicitly allocated to registers, stack, or compile-time
constants. This provides predictable assembly code generation and allows programmers to
manually insert countermeasures at what would be an intermediate level of a C compiler.
Jasmin is used in particular to write constant-time cryptography code.

2.3.2. High-level design considerationscoi

A few design considerations apply regardless of implementation.

Countermeasure scoping and placement. Systems often have non-critical code that could
be left unprotected, but is hardened anyway by default. Targeting critical code sometimes
leads to gigantic differences in performance [Gei+23], making otherwise unaffordable whole-
program protections viable. Most papers do not address the task of selecting the critical parts
of a system for hardening, instead leaving it to domain experts typically via code annotations
supported by static analysis. The task of passing down this information to hardening passes
is also sneakily left unaddressed in most cases; I’ll delve into this in Section 2.4.

A similar question for which manual specification isn’t quite viable is the local placement
of countermeasures. Not all fault attack paths in a given code unit (e.g. function) actually

Shttps://hex-rays.com/IDA-pro/
®https://www.radare.org/n/, https://rizin.re/ (fork)

https://hex-rays.com/IDA-pro/
https://www.radare.org/n/
https://rizin.re/

28 CHAPTER 2. INCOMPLETENESS IN THE SECURITY STACK

result in exploitable faults. Automatic countermeasures can thus be over-protective, which is
a liability since any extra hardening code increases the program’s attack surface. Boespflug
et al. [Boe+23] optimize the placement of countermeasures against multi-fault attacks by
enumerating actually-vulnerable paths with the help of a symbolic execution engine.

Multi-pass hardening schemes. Hardening passes are most often atomic; they take an arbi-
trary program as input, and produce a secure output with a security property directly related
to the attack model, with one or more consecutive passes on a single program representation.
Some of these passes may be analyses, like in Proy et al.’s loop hardening [Pro+17] that relies
on LLVM’s back-end loop analysis and supplements it with additional analysis.

Smokestack [AA19] randomizes the layout of functions’ stack frames at each invocation
to thwart Data-Oriented Programming attacks. It consists of 5 LLVM IR passes but has to
modify libraries and the C runtime as well; the complex composition of binaries, which contain
compiled sources, statically-linked code, dynamically-loaded dependencies, and a runtime,
may not always accommodate high-level program transformations.

There are few schemes that work on multiple representations. SecSwift [De 19] is notable
in this category. Despite being mostly located in LLVM’s middle-end, it needs some of its
duplication features in the back-end (notably duplicating return values of functions). Thus,
the implementation arranges for duplicated IR instructions to be preserved until the back-end.

Countermeasure composition. In general, countermeasures only compose for free if they
sit at different abstraction levels, like software replication on top of hardware error correc-
tion [Rei+05].

A few works do compose interacting countermeasures, like the evaluation of the CompaSeC
transformation by Geier et al. [Gei+23]. The crux of CompaSeC is a fine-tuned combination of
Dual Module Redundancy (DMR), a duplication of both code and instructions, and Runtime
Signature Monitoring (RSM), a CFl scheme. This scheme is evaluated by comparing with pair-
ings of independently-designed data-flow and control-flow countermeasures. This escalates
issues with attack surface increases, and some combinations strikingly end up less secure
than one of their components, with none reaching CompaSeC’s level.

The PROSECCO [Bel+21] compiler features a number of countermeasures, including masking,
code polymorphism, instruction replication and a CFl scheme. In one test scenario, a program
is masked at the source level before an instruction skip countermeasure is applied by the
compiler. The post-compilation verification tools in PROSECCO validate that the output
program is indeed secure. This is a pairing we can expect to work well because these two
countermeasures sit at different levels of abstraction and do not interact.

To my knowledge, the theoretical bases for analyzing composed countermeasures, especially
at the back-end/architecture level, are completely unexplored. Since many of these counter-
measures are not formalized, in some cases lack a clear fault model, and in many cases are
not complete, the nature of the guarantees and limitations that could be derived in composed
schemes is not obvious either. As such, countermeasure composition is a direction in which
experimental schemes are ahead of formal analysis by a long mile.

2.4. TECHNIQUES AND DESIGN OF HARDENING COMPILATION 29

Sharing of security abstractions. In their work about Security-Enhanced LLVM [Win18],
Winderix make a compelling argument for sharing security abstractions between source
languages like C and Rust, and targets like Intel SGX and Sancus [Noo+17] through compiler
IRs. Their implementation focuses on module isolation but advocates for language-level
formalizations of security mechanisms. Although my target is slightly different, this thesis
strongly echoes this idea of factoring security tooling in the toolchain.

2.3.3. Overview of security modeling and proof

Compared to the extensive literature on the semantic correctness of program transformations
and compilers, there’s less work on proving security properties (with a clear focus on the
constant time policy). This is likely related to the invasiveness of low-level and non-functional
effects that are difficult to capture in formal models. Still, wherever a formal framework can
be defined, usual reasoning methods used for correctness do transfer to security proofs.

Many countermeasures in security literature (for instance [CRA06; DSL17; Gei+23]) achieve
sophisticated and carefully-balanced compiler transforms, but lack a detailed enough pro-
gramming and security model for a formalization. They often rely instead on randomized or
exhaustive attack campaigns for validation. This complicates the development of a formal
security proof, or, in the more likely case that the countermeasure is incomplete, a detailed
characterization of the threats that are not covered.

Multiple automatic methods can tackle cases where a proof is possible. Translation valida-
tion [BDG22] is a post-verification that the output program is secure independent of the
implementation of the transformation. Static analysis [Chr+13] provides a conservative
approximation of program semantics which can rule out undesired behaviors. Symbolic ex-
ecution [Pot+14] performs a symbolic interpretation of program fragments which can the
interface with SMT solvers.

As an example for validating a side-channel vulnerability, Bayrak et al. [Bay+13] implement
an analysis to determine whether any value in a program depends on secrets without also
depending on random inputs. The analysis operates in an LLVM back-end and identifies
dependencies by querying a SAT solver for the possibility of a given input change affecting
a given output value. It is configurable with user-supplied leakage models at the assembler
level and finds potential leaks quickly thanks to SAT solvers’ efficiency.

Formal verification against hardware vulnerabilities has also reached the certified C compiler
CompCert [Ler09]. For example, Hutin proves a modification of CompCert that preserves the
constant-time policy when applied to constant-time source code [Hut21]. Pesin et al. [Pes+25]
add middle-end (RTL) countermeasures in Chamois CompCert [Mon+23] and prove their
security at insertion time. Their framework covers generic expansions of instructions, which
may include CFG transformations. To my knowledge, there is no established work (yet) on
formally certifying security preservation across optimizations or lowerings in CompCert.

30 CHAPTER 2. INCOMPLETENESS IN THE SECURITY STACK

2.4. Preserving security in the compilation chain

Dealing with security properties across compilation stages raises inherent challenges. First,
compilers preserve semantics but not arbitrary security properties, so countermeasures are
liable to being broken by optimizations and lowerings. Second, the progressive lowering across
multiple languages impacts the expression of security properties, if not the ability to express
them altogether; so it is not even clear what compilers should preserve. These cross-layer
issues have been raised previously [Bar+17], but do not have foundational answers yet.

I’ll cover this linearly, starting with known breakages of security properties by compilers
(Section 2.4.1) and common tricks used to counter them (Section 2.4.2). Then I’ll focus on
solutions, with a few certified results (Section 2.4.3) and Vu’s systematic approach to property
preservation, by which my work is heavily influenced (Section 2.4.4).

2.4.1. Compiler interference threatening security properties

Compiler optimizations are well-known for breaking security properties that extend beyond
functional correctness [DPS15]. Looking at some properties discussed in Section 2.2:

+ CFl checks are always redundant when standard language semantics are not violated, and
are liable to being removed by constant folding with the help of static analysis.

« The constant-time property is difficult to maintain because compilers have no shortage of
speed-improving peephole identities that re-identify branchless computations, and to a
lower extent loop optimizations that can unmask constant-time array operations.

« Memory erasure is affected by Dead Store Elimination (DSE), even for arrays.

« Computation order can be blurred significantly by peephole rewriting and is explicitly
overruled by back-end instruction scheduling.

« Control and data flow redundancy is explicitly eliminated by optimizations like basic block
merging, Common Subexpression Elimination (CSE) and Global Value Numbering (GVN).

In his thesis about the preservation of the constant-time property in CompCert, Hutin [Hut21]
provides such examples of clang introducing jumps that break constant-time. Figure 2.4
illustrates how unoptimized output from clang keeps the same structure as the original
program, but rounds of optimizations from -01 lead to LLVM recognizing a branching structure.

Many works avoid these issues by disabling optimizations [Reb+01; HLB19; Kia+21; WMP21].
However, this is a costly decision since the performance gain for optimizations can compensate
the cost of major countermeasures like the replication in SecSwift [De 19]. The other popular
approach is to insert countermeasures late enough to operate after all major optimizations,
which is typically the case starting in the early back-end (e.g. for LLVM).

Note that even disabling optimizations is not a get-out-of-jail-free card; lowerings are a
problem too. LLVM’s front-end lowering from clang to LLVM IR performs a minimalistic
constant propagation. The construction of SSA can also be accompanied by Global Value
Numbering (GVN) [Lem23], which removes duplicate expressions and is an obvious risk for
replication countermeasures. LLVM’s Selection DAG data structure also merges identical

2.4. PRESERVING SECURITY IN THE COMPILATION CHAIN 31

int f(int b, int x) { f: pushl %ebp

// b converts to boolean mov1 %esp, %ebp

return (!!b) * x; mov1l 12(%ebp), %eax # (dead)
} mov1 8(%ebp), %eax # (dead)

cmpl $0, 8(%ebp)
setne %al
xorb $-1, %al

Source code

f: movl 4(%esp), %eax xorb $-1, %al

testl %eax, %eax andb $1, %al

je .LBB0O_2 movzbl %al, %eax

mov1l 8(%esp), %eax imull 12(%ebp), %eax
.LBBO_2: popl %ebp

retl retl

clang-16 -m32 -01 (i386) clang-16 -m32 -00 (i386)

Figure 2.4: Constant-time program insecurely compiled by clang’s optimizations [Hut21]

computations in the same block. None of these steps can be disabled, making them the more
fundamental issue; I'll expand upon this point in Section 3.4.3.

Simon, Chisnall, and Anderson [SCA18] demonstrate the full effect of this compiler interfer-
ence by cataloging common security-related requirements by programs and various ways in
which compilers can break them. They conclude that technical complexity in the compiler and
subtleties in the language’s specification (especially for C) mean that a continued engineering
effort to make security a first-class citizen is the only option. However, such a design hasn’t
emerged yet and most literature still relies on various types of tricks.

2.4.2. Techniques for property preservationoocooiiiiii

Beyond disabling compiler optimizations, programs that require property preservation usually
rely on known, informal compiler behaviors to generate suitable code. The listing below is
roughly in order of wild hacks to solid guarantees.

Relying on difficult optimizations. One option is to hide secure code behind difficult
optimizations that the compiler is not expected to perform. Lidman et al. [Lid+12] implement
(an extension of) Dual Module Redundancy (DMR), which requires duplicating function inputs.
As arrays cannot easily be duplicated, the scheme duplicates their accesses instead, as shown
on Listing 2.5. The global array c is accessed a second time through a different pointer c2
which is dynamically equal to c but statically separate. The duplication won’t be removed
unless the compiler is capable of inter-procedural analysis or inlines kernel?2.

Volatile and function pointers. Another popular trick is to abuse volatile objects or
pointers, using the fact that compilers always allocate volatile objects to memory, and C and
C++ make accesses to these objects side-effecting, thus not removable. This is typically used
to protect redundant or otherwise dead code, which tends to be subtly incorrect because
volatility only protects accesses, not uses.

32 CHAPTER 2. INCOMPLETENESS IN THE SECURITY STACK

double c[SIZE];
/* Original function =*/
void kernell() {

for(int i = 1; i < SIZE-1; i = i+1)
/* use c[i] */
}
/* Hardened function */
void kernel2(double *c2) {
for(int i = 1; i < SIZE-1; i = i+1)

/* use c[i] and duplicate with c2[i] */

b
// call site

kernel2(c);
Listing 2.5: Dual Module Redundancy for an array input to a function

Listing 2.6 shows a common technique for zeroing the memory of a dead array, by calling
memset through a function pointer whose value is statically unknowable due to being volatile.

/* Bypass DSE by preventing the static identification of memset */
void *(* volatile memset_ptr)(void *, int, size_t) = &memset;
memset_ptr(array, 0, sizeof array);

Listing 2.6: Dubious usage of volatile

While this works in practice, using volatile only guarantees that the program will access
memset_ptr, not use it. In particular, the compiler could legally add a dynamic check for
memset_ptr == &memset and skip the call if this turns out to be true. This may seem unlikely
but it makes sense for a profile-guided optimization to inline a 100% pointer call on a hot path,
especially as memset is a built-in with further optimization opportunities.

Correct usage of volatile does exist; Bonnal et al. [Bon+23] use it to force the compiler to
read recently-modified variables in a CFl scheme, shown below.

// Force read/write access to a variable in memory
#define ACCESS(VAR) *((volatile typeof(VAR) *)&(VAR))

int x = 2;
ACCESS(x) + ACCESS(x); // = 4, two memory accesses
Listing 2.7: Correct usage of volatile

Accessing a non-volatile object through an Ivalue of volatile type used to not count as a volatile
access [C11, 5.1.2.3§2], which was fixed” in C23 [C23, 5.1.2.4§2].

Modifying the optimization pipeline. One way to avoid interference from optimizations is
to analyze the compiler pipeline and iteratively disable or modify optimizations that are found
to break security. For example, Proy et al. [Pro+17] harden loops against control flow faults

"https://www.open-std.org/jtcl/sc22/wgl4/www/docs/summary . htmi#dr_476

https://www.open-std.org/jtc1/sc22/wg14/www/docs/summary.htm#dr_476

2.4. PRESERVING SECURITY IN THE COMPILATION CHAIN 33

early in the back-end, and find that LLVM’s “control flow optimization” and “branch folding”
passes interfere with the scheme. They disable the first and alter the second in their build
of LLVM to ensure that the protected control flow is preserved. While flexible, this solution
relies heavily on coverage from tests and requires continued expert maintenance with each
compiler version.

Inline assembly. One official feature that’s often useful for security is GCC’s rich inline
assembler mechanic [GCC25], which interfaces C and assembly code and is also supported
by clang. While not standard (C has no asm() statement; C++ does but with no semantics),
it’s documented and provides reliable guarantees. GCC’s inline assembly blocks are opaque
input-to-output blocks of code and are subject only to limited optimizations that can be further
reduced with the volatile qualifier. This can protect otherwise-optimizable operations like
updating a statically-constant control-flow signature [VHMO03], seen below.

// vulnerable to optimization like constant propagation
signature *= 9265;

// cannot be removed or introspected

asm volatile(”xorl %0, 9265": "+r"(signature));

Listing 2.8: Inline-assembly implementation of an x86 signature update

As another example, the automated masking implementation from Abromeit et al. [Abr+21]
propagates information about secret variables all the way from the C source down to the
assembler code before performing binary rewriting. This annotation takes the form of an inline
assembly statement tied to the initialization of these secret variables. Here inline assembly is
just a marker used as input in later analysis during binary rewriting.

Indirect semantic guarantees. SecSwift [De 19] uses a system similar to inline assembly
for protection, but at the IR level. This uses new intrinsic functions which are opaque to LLVM
and come with explicit lowering to other intrinsics all the way down to assembly. The opacity
is enforced by LLVM’s internal description of functions (including non-determinism, side-
effects, etc.) which the compiler is guaranteed by API to honor. This method was validated
experimentally under both -03 and link-time optimization (LTO).

Explicit library functions. Libraries being easier to evolve than languages, multiple revisions
of the C standard added security-focused functions in the standard library. C11 introduced
the bounds-checking interface known as “Annex K” [C23, K], with a unique feature that
the bounds-checking memset_s function is protected against optimization [C23, K.3.7.5.1§4].
Annex K was unsuccessful in reaching wide adoption® but this particular feature was ported
over to C23’s memset_explicit function [C23, 7.26.6.2], standardizing third-party options
like FreeBSD’s explicit_bzero or Windows’ SecureZeroMemory. The Linux manual page
bzero(3) has stated since 2017’ “[anticipating] that future compilers will recognize calls
to explicit_bzero and take steps to ensure that all copies of the sensitive data are erased,

8For reasons explained in n1967: https://open-std.org/jtcl/sc22/wgl14/www/docs/n1967.htm
*https://git.kernel.org/pub/scm/docs/man-pages/man-pages.git/commit/man3/bzero.3
?71d=55e04d23701e8aa8fb3c0164e95885740ea9%ef44

https://open-std.org/jtc1/sc22/wg14/www/docs/n1967.htm
https://git.kernel.org/pub/scm/docs/man-pages/man-pages.git/commit/man3/bzero.3?id=55e04d23701e8aa8fb3c0164e95885740ea9ef44
https://git.kernel.org/pub/scm/docs/man-pages/man-pages.git/commit/man3/bzero.3?id=55e04d23701e8aa8fb3c0164e95885740ea9ef44

34 CHAPTER 2. INCOMPLETENESS IN THE SECURITY STACK

including copies in registers or in "scratch" stack areas”, an ambitious extension that to my
knowledge has yet to be implemented.

Explicit guarantees from domain-specific languages. Custom languages can of course
provide guarantees of their own, like Jasmin’s preservation of the constant-time property.
One example that doesn’t use a fully custom toolchain is the FaCT DSL [Cau+19], which
differs in that it uses Dudect [RBV17] for constant-time preservation and compiles to LLVM
bitcode. FaCT still needs LLVM back-ends to correctly translate into targeted assembly
without breaking security properties.

2.4.3. A few certified security propertiesooooiiii

A few security properties have been studied in great detail and their preservation certi-
fied in production compilers, including a type of non-interference called compartmentaliza-
tion [Thi+24] which is used in architectures likes CHERI [Woo+14].

Unsurprisingly, the constant-time property has received the most attention in this area.
Because it relates to branches, array accesses and data-flow dependencies, which are native
concepts of all languages in a C-to-assembler compilation chain, it presents relatively few
cross-abstraction complications. Through their respective theses, Trieu and Hutin certified a
constant-time-preserving compilation process in CompCert [Tri18; Hut21]. The constant-time
preservation property for Jasmin is also proven in Cogq.

2.4.4. Preserving generic propertiescoooviiiiiiiiiiiiiiiiiiii

The issue of finding a general model for security properties during compilation goes hand-in-
hand with whether compilers can preserve them in general. Fault attacks tend to branch out
in many different subtle attack models that all have slightly different security properties; thus,
the constant-time approach of preserving one specific property isn’t as widely applicable (not
to mention Spectre highlighting the limits of constant-time anyway [Cau+20]). This calls for
a general framework for specifying and preserving security properties.

The foundations for this can be found in Vu’s Ph.D thesis [Vu21]. Vu shows that a general
class of functional properties extended with a concept of observation can be preserved by LLVM.
An example of an observation (along with the general prototype) is shown on Listing 2.9.

int __builtin_observe(<VARIABLES...>, <PROPERTY(str)>);
__builtin_oberve(T, i, x, "T[i] == x");

Listing 2.9: Prototype of observations (simplified) and an example [Vu21]
The semantics of an observation, defined in every language of the LLVM compilation chain, is:

1. there exists a control point where all the VARIABLES are defined;

2. each variable’s value is as if the program was evaluated strictly according to the rules of
C’s abstract machine up to this observation point;

3. hence, evaluating the PROPERTY at that point in any intermediate program yields its value
as per the abstract machine.

2.6. TRACEABILITY IN COMPILATION 35

This can be rephrased at a fundamental level in terms of valid program transformations. C and
C++ make surprisingly few guarantees about programs’ behavior; any program transformation
is allowed as long as 1/O operations and accesses to volatile objects are not reordered'. In
other words, 1/0 operations and accesses to volatile objects (plus program termination) are the
only “observable effects” in C and C++ (although compilers usually define more side-effects).
Vu’s contribution is key in that it adds expressions to the set, extending the base vocabulary
available to express security properties at all abstraction levels with a single definition.

Another way to view this is that observations force LLVM IR’s and assembler’s respective loose
notions of “variables” to follow part of the semantics of C variables, by appropriately inhibiting
lowerings and optimizations. This closes the abstraction gap that prevented functional prop-
erties at the C level from being expressed at assembler level. Crucially, the implementation of
observations is based on existing observable items of LLVM’s intermediate languages (namely
side-effecting intrinsics, like SecSwift [De 19]), meaning LLVM is guaranteed to preserve them.
This is an important building block in the preservation of security properties.

Vu’s work still leaves the question of what security properties can be captured by observations
open. However, this vision of the property preservation problem at least shows that compiler
integration can be decomposed into (1) generic preservation mechanisms in the compiler,
and (2) implementation of security properties using these mechanisms. The main challenge
addressed in this thesis is designing the preservation mechanisms.

2.5. Traceability in compilation

Security isn’t the only client for passing down extra-functional information down compiler
stages; so is traceability, the ability for users to determine how a compiler got to generating
particular aspects of its output (which gives its name to my main contribution “Tracing LLVM”).
This intersects domains such as Worst-Case Execution Time estimation [LPR14], but mostly
runs into the validation of debug information [Li+20]—which is famously unreliable at high
optimization settings for many of the same reasons as security countermeasures—and other
runtime information like the precise memory layout of program data [KHM20].

Some properties can be formally studied in this way, such as information flow being partitioned
into independent domains in CompCert [CSG16] or a generic representation of security
property based on automata, intended to be checked by translation validation [NT20] after
running a stock compiler. Traceability can be used more generally to evaluate implementations
with regard to their specification [CGZ+12].

Similar objectives arise with split compilation [CR10; Les+07; Tag11], a technique that transfers
analysis and optimization information from early stages to late stages of a compiler. It is
specifically intended to connect the offline and online steps of a bytecode compiler, which
offers a practical solution to the lowering problem: annotating the bytecode [KC01], which is
a stable and well-documented interface between both sides.

https://en.cppreference.com/w/{c,cpp}/language/as_if. Direct links: for C, for C++

https://en.cppreference.com/w/c/language/as_if
https://en.cppreference.com/w/cpp/language/as_if

36 CHAPTER 2. INCOMPLETENESS IN THE SECURITY STACK

2.6. Software/hardware co-design

Co-designed software/hardware schemes provide an interesting middle-ground. Pure hard-
ware solutions often suffer from limitations in flexibility or performance; meanwhile, pure
software solutions struggle to provide full security within reasonable time and space overhead
due in part to a lack of foundational guarantees. The extra effort in implementing support on
both sides pays off with a significantly larger design space, as shifting around responsibilities
between both sides allows countermeasures to avoid each side’s weaknesses while exploiting
their strengths. Co-designed countermeasures are thus quite varied in nature and balance,
with some recurring benefits.

2.6.1. Improving performanceccooiiiiiiiiiiii

Manssour et al. [Man+22] use hardware support to improve the performance of a counter-
measure against data corruption that runs critical instructions multiple times, comparing the
results to detect anomalies. Doing this in software is very costly due not only to repeated
execution, but also code size, register pressure, and many extra branches. They propose a new
instruction rpl w n which repeats the next w instructions n times, and compares results in
hardware with an exception in case of a mismatch. In addition to major performance benefits,
this reduces compiler work to only marking sensitive instructions. This does however increase
the effort of hardware qualification/certification.

2.6.2. Addressing micro-architectural fault models

Gaudin et al. [Gau+23] augment the RISCV ISA with two instructions “lock” and “unlock”
which allow a program to lock and unlock a cache line, ensuring that memory accesses at
locked addresses are constant-time. Such approaches have been tested before, but eliminating
information leaks is difficult because locking lines and accessing them still affects the publicly-
visible state of the cache. This particular paper improves the security of the scheme by
ensuring (among other things) that locked lines cannot be evicted implicitly and accessing
them doesn’t update LRU information. This leads to traces for an appropriate leakage model
being independent of secret inputs in a simulator evaluation of the protection.

2.6.3. Enriching the interface layer between software and hardware

Guarnieri et al. [Gua+21] introduce the concept of software/hardware contracts that enrich the
ISA with a specification of processors’ speculative behavior. Each contract would formalize a
hardware security guarantee that could be exploited by software to avoid side-channel attacks.
Compilers could then target contract sets like they target ISAs, producing optimally secure
code for each platform [GP20]. To my knowledge, this idea is not implemented yet, with most
work focusing on finding appropriate formalisms for contracts.

Other approaches shift the balance to mostly hardware logic with minimal software support.
For example, the CHERI/Morello initiative [Woo+14] adds enhanced pointers with security
features directly in the ISA, allowing old programs in memory-unsafe languages like C to
run securely. Other hardware primitives for security [Hu+20], such as True Random Number

2.7. CHAPTER CONCLUSION 37

Generators (TRNG), make it possible to implement secure cryptographic functions, Physically
Unclonable Functions (PUF), and authentify devices securely.

This idea is not limited to security; RISC-V reserves many opcodes for HINT instructions
whose purpose is to provide performance information, such as “memory-system spatial and
temporal locality hints, branch prediction hints, thread-scheduling hints, security tags, and
instrumentation flags for simulation/emulation” [RV1, 2.9].

2.7. Chapter conclusion

Countermeasures against fault injections frequently have to deal with compilation. Some
protections are entirely in hardware, some can be performed directly on assembler code, but a
significant number involves either transformations of compiler intermediate programs or a
need to connect the source code with later stages. The extra-functional nature of these security
endeavors means that compilers provide no explicit help, and with their current complexity,
they’re not particularly predictable either. This leads to an adversarial relationship commonly
fought with semi-reliable tricks, an approach that’s empirically tenable but hampers progress
towards verifiable security guarantees and formal validation. Previous work has outlined a
path towards security-aware compilation based on compiler extensions that wall off security
code from interference, which | now wish to improve upon.

The vision: threading security
through abstractions

his chapter describes the general direction of this thesis. The essential point made

is that compilers are well-positioned to address the main reliability problems with

software countermeasures (in large part because they cause them). I'll advocate for

first-class compiler support for security as a separate research target (see Figure 3.1)
and a secure compilation flow that doesn’t require low-level information to establish security
at intermediate stages (see Figure 3.2). Note that some of the components described in this
chapter are still future work—the vision captures more than the contribution.

Sections 3.1 and 3.2 describe the broad objectives that this thesis targets in terms of improving
reliability, and why treating secure compilation as its own subject is necessary. Section 3.3 goes
into more detail as to the benefits that a security-aware compiler would bring to the design
and validation of countermeasures against hardware vulnerabilities. Section 3.4 introduces
small examples to showcase typical friction between compilation and security, with extra
discussion in Section 3.5 and solutions (using Tracing LLVM) in Chapter 5.

Research questions

— What are the lowest-hanging targets to improve the reliability of software protections?
— How could a high-level compiler contribute to low-level security?

3.1. Targets of interest in the security process

There are a couple of directions | think are high-value targets to help address the effectiveness
and cost of existing countermeasures. For brevity, | will refer to the process of analyzing
attacks, designing, implementing and testing countermeasures as the security process.

3.1.1. Delimit uncertainties to facilitate unit validationocii.

Managing uncertainty is key when dealing with hardware vulnerabilities. Some incomplete-
ness is structural, like when devising fault models; some is “just” a hard engineering problem,
like compilers interfering with code hardening. Obviously any uncertainty we can eliminate
reduces the risk that countermeasures could be defeated in the real world. Essentially it would
be great to have fully formalized attack models and security properties with theorems to prove
that the countermeasures are effective, or get as reasonably close as possible.

3.1. TARGETS OF INTEREST IN THE SECURITY PROCESS 39

A second objective, less obvious but in my opinion just as important, is to characterize the
boundary around uncertain behaviors that we can’t eliminate. It’s more informative to refine
a limitation that “compiler might optimize away instructions” into “compiler saturates its
known set of peephole rewrites” because it helps characterize what compiling steps might
defeat protections and provides a basis for evaluating the countermeasure.

Such specific evaluation is needed for the feedback loop of the security process. Hardware
attack campaigns are the ultimate evaluation, but they don’t readily explain causes of failure.
Checking hardened circuits against simulated attacks, and hardened programs against emu-
lated attacks, and compiler stages against a specification of hardened code, provides insight
into individual steps and translates much more easily into design improvements.

3.1.2. Account for high-level security requirements

Countermeasures against fault injections in literature place more emphasis on dealing with
the low-level effects of attacks than building up security properties. For instance, it’s quite
common to run into countermeasures that protect against multiple fault models but rare to
find one that guarantees multiple security properties. In fact, as | discussed in Section 2.2,
many just fix (partial) functional correctness by default.

However, applications have high-level security requirements that are both stronger and weaker:

« Stronger requirements include any other non-functional properties, such as availability
(denial of service by repeatedly triggering a countermeasure may not be acceptable), con-
fidentiality (faults can leak information both functionally and through side-channels), or
performance (costly replay countermeasures for instance may not suit a real-time system).

« Weaker requirements because most systems are not worried about all failures; for instance
a bootloader might not care if it’s faulted as long as it doesn’t boot an untrusted system.
Most programs also have lots of non-critical code that doesn’t need protecting.

Accounting for these requirements to strengthen the countermeasures while weakening their
scope would make them more attractive to widely-used embedded systems. Currently, the
performance cost mostly limits them to the most critical systems such as smart cards. (This is
not helped by a tendency to use unoptimized builds as a baseline in performance evaluations,
even though unprotected builds would be optimized.)

Hardware countermeasures are the most obvious examples where security properties are fixed
for the entire program (being the furthest away from source-level requirements). Ultimately,
a hardware-only countermeasure is a stronger claim than might first seem: it’s a hardware
behavior complete and secure enough to fulfill the security property software needs, in a cost-
effective way, without information or intervention. Since hardware is traditionally only given
software’s functional requirements (through code), any consideration of other requirements
will likely require some software contribution.

Of course, to provide requirements to countermeasures we need to connect the higher levels
of abstraction (where the requirements are initially specified) with the lower levels (where the
attack and countermeasure operate). This will be one of the main purposes of Tracing LLVM,
echoing the need for compiler traceability with a distinct tint of security.

40 CHAPTER 3. THE VISION: THREADING SECURITY THROUGH ABSTRACTIONS

3.1.3. Facilitate software/hardware co-design

Finally, adding the fact that accurate attack models often involve hardware components, the
dual contributions of software and hardware become clear:

« Software is a versatile basis for countermeasure logic, has fast development and deployment
cycles, and hosts application-specified requirements and protection scope.

« Hardware can protect against the initial effects of attacks, can self-assess better than
software (which may not run when hardware is compromised), and can improve performance
for common security code patterns.

My contributions are geared towards co-designed software/countermeasures, which are rarely
explored compared to pure-software or pure-hardware protections, hence my emphasis on
providing users with fine control of the compilation process until the lowest levels.

Of course, in most institutions it’s not particularly straightforward to bring software and hard-
ware designers to collaborate on such a project. The distribution of skills into different projects,
teams, and research communities mirrors the functional layers that computers are built on and
can be a high hurdle to clear. Still, improved software/hardware interfaces can emerge from
thoughtfully-constructed countermeasures; software/hardware contracts [Gua+21] attempt
this for side-channels. Hopefully, we will see more work in this direction for fault injection
countermeasures too.

Exploring the design space of co-designed countermeasures is not the focus of this thesis, sadly;
| stop at Chapter 4’s demonstration that a co-designed approach can protect against an accu-
rate model with good coverage and reasonable costs. Many details of the software/hardware
interface deserve more attention and will hopefully be analyzed in future works.

3.2. Distribution of responsibilities

My key argument is that the interests above invite (if not downright require) splitting off
secure compilation as a new responsibility. Figure 3.1 shows how this fits in the entire process.

Left is the end-user, typically an industry actor working on a secure application. Middle is the
countermeasures themselves (top), with potential hardware contributions (bottom), which will
be featured in Chapter 4 with an example of co-design. Right is the “new” secure compilation
support block, which is the subject of Chapters 5 through 7.

Everyone already assumes that countermeasures could be designed once and used by multiple
applications, and thus either publish their details, provide research artifacts, or otherwise
document them. Compilation techniques are different; papers and artifacts mostly skim over
their handling of the compiler and stick to the tricks needed for the countermeasures at hand
without generalizing. A long-term solution to these recurring issues requires treating secure
compilation as a first-class target [Win18; Vu21].

An important side-effect of splitting off secure compiler development is that there should be
an interface linking it back to countermeasures. The follow-up question of what tools programs

3.3. THE COMPILER AS THE CORNERSTONE OF HARDENING 41

Countermeasures Secure compiler
security engineer compiler engineer

Preserves and tracks
security across
abstraction levels

Secure application

end-developer Hardening passes relies on

and validation

Source annotations;

countermeasures r e(f:fs i collaborates with

applied and options — Passi q
assive an

software-controlled
security features

hardware engineer
Secure hardware

Chapter 4 Chapters 5, 6 and 7

Figure 3.1: Distribution of responsibilities for countermeasure development

need from compilers for security is quite deep and will not be answered in this document, but
hopefully Tracing LLVM can be a playground for exploring it.

3.3. The compiler as the cornerstone of hardening

A secure compiler for countermeasures isn’t just about avoiding breakage—it could factor out
the many uses cases explored in Section 2.3.1 and enable end-to-end, source-to-binary counter-
measures. As the main driver of program analysis and code generation for the target system,
the compiler is best positioned to perform hardening and assist by providing information that
connects intermediate programs to the source code. Getting the compiler to cooperate this
way is certainly not easy, but it’s deliberate design, as opposed to the fundamental challenge
of erecting solid protections while using an adversarial black box for code generation.

An off-the-shelf C compiler produces an assembly program whose behavior is constrained by
a specification given as C source code. Compared to this, a secure C compiler should:

« Further constrain the assembly based on requirements given by countermeasures (security);

« Characterize these security requirements for each intermediate language so that every
compiler stage can be studied and debugged individually (validation);

« Assist the implementation of countermeasures by connecting intermediate programs to the
source specification (support).

Maybe the most obvious hurdle is that the compiler doesn’t have access to the lower-level
details of attacks, and so it needs a different model to track security during compilation.
3.3.1. Model of asecure build
There are two common visions for how compilers may generate secure programs. We speak of:

« Property preservation when the input program is already protected and the compiler is
tasked with preserving this desirable property in its assembler output;

42 CHAPTER 3. THE VISION: THREADING SECURITY THROUGH ABSTRACTIONS

« Hardening when the input program is not protected and the compiler is tasked with
transforming it into a secure form.

These approaches may look orthogonal because they place the responsibility of hardening
either on the programmer or the compiler. But a closer analysis that accounts for compilers’
intermediate languages reveals that they overlap while missing important concerns. For one,
any hardening not performed on the very last program representation must be preserved during
later compilation stages, so we should almost always be using both. Property preservation also
implies that source properties automatically make sense on the target, which is definitely not
the case in general. Instead of a semantic idea of “resisting attacks”, we often have low-level
attack models (that can’t be captured at high levels) and high-level annotations (that direct
hardening passes and need to be preserved until then).

Figure 3.2 illustrates a secure compilation model that accounts for this internal complexity. For
clarity, the model is instantiated on a countermeasure against an assembler-level attack model,
which takes source annotations and hardens in two steps at the LLVM IR and assembler levels.
The left side describes the hardening steps while the right side lists the security property
associated with each intermediate program.

Program hardening Security properties

Programmer
Security annotations —— C source code =~ —> Well-annotated

i Lowered annotations
i match source code

: l Compiler
Hardening pass P, ——> LLVM IR

Lower annotations

Structural property
“P; was applied”

Preserve structure SelectionDAG Variant of “Py was applied”
added by P; Machine IR on lowered syntax
. Structural property
Hardening pass P, ——> Assembler « ad?
countermeasure applied
Preserve structure Libraries Runtime Variant of “countermeasure
added by P, l i Linker applied” on lowered syntax

Done ——> Executable code ——— Resists attack

Figure 3.2: End-to-end security modeling for a two-pass countermeasure

In this approach, the compiler mixes hardening and preservation/lowering of security annota-
tions or code. Notice how only the last security property is “resists the attack” as the attack
model is formulated on assembly code. The initial security property is for the source to be
properly annotated with respect to high-level security requirements. This doesn’t reflect the
source’s functional semantics but instead the fact that we can compile it to a secure assembly
program. Intermediate properties encode the progress of the hardening instead of attempting
to describe the intermediate programs’ response to an attack that they can’t model. Since
security code usually has non-functional aspects, these intermediate properties are encoded

3.3. THE COMPILER AS THE CORNERSTONE OF HARDENING 43

with a combination of:

« Structural (syntactic) properties, such as the presence of annotations, declarations for
sensitive data using a dedicated type, or control-flow integrity checks being correctly
interleaved with computations. These are straightforward to check in the source code and
fit well in syntax-directed optimizations and lowerings.

« Semantic properties, such as data sensitivity being fully annotated on data-flow paths,
or non-removable security checks being side-effects. These properties can be difficult to
check (requiring, e.g., data-flow analysis) and their preservation relies on the compiler’s
correctness.

It may feel unnatural to depart from semantics and use structure to encode a notion of security.
However, this makes sense for multiple reasons:

« First, the entire premise of non-functional requirements is that they don’t fit within se-
mantics. If the attack model is micro-architectural, even the assembly output won’t have a
semantic “resists attack” property to express.

+ Syntax is already used for other non-functional targets like performance. For instance,
LLVM IR has conventions on normalizing certain expressions to facilitate matching by
InstCombine (the peephole rewriter), later leaving back-ends to undo it if the normalized
form is not the fastest for the targeted architecture. Pattern-matching optimizations also
rely on specific structure (e.g. detecting polyhedral loop nests).

« Finally, structure composes better. Implementing hardening passes in LLVM often requires
technical adjustments, like splitting a pass in two; be it to work around a problematic
optimization, to wait for a lowering, or simply to factor out a reusable component. In such a
case, partially-hardened programs in-between passes are unlikely to have good semantic
properties of their own, and are easier to characterize based on syntax. This generally
makes it easier to assess whether nearby optimizations would interfere as well, as most
transformations are syntax-directed.

This view suggests that we are compiling security “source code” (annotations) to security
“target code” (countermeasure logic) where security compilation steps (hardening passes) are
interleaved with functional compilation steps (analyses, optimizations and lowerings). For
these interleaved processes to not interfere with each other, we need hardening passes to
not affect functionality (which is usually fine) and optimizations and lowerings to not affect
security, which is a universal concern for optimizations, but rarely-brought-up complication
for lowerings. | will illustrate the importance of lowerings in examples in Section 3.4.

3.3.2. Potential for integration with the rest of the toolchain

A clear formalism for specifying and controlling secure code would benefit much more than
just the compiler.

Any clean specification for a useful set of security annotations could be picked up by linters.
It would allow tools like Coccinelle [Pad+06; Pal+11] to flag and update more suspicious
patterns. And of course static analyzers like Frama-C [Cuo+12] could use it them to check
top-level “well-annotated” security properties at a large scale.

44 CHAPTER 3. THE VISION: THREADING SECURITY THROUGH ABSTRACTIONS

The story is similar near the end of the compilation chain. On this side compilers interface
with linkers, whose relevance will be illustrated in Chapter 4 with a checksum relocation.
Debuggers are also heavy users of all traceability features and can contribute to security
testing [Vu21, 4.4.1]. And emulators and simulators that check runtime traces for violations
of expected security behaviors would benefit from cleanly lowering security specifications.

3.3.3. Lack of language supportcoooiiiiiiiiiiii

So far, I’'ve only advocated for security features against hardware attacks to be supported by
compilers based on language extensions (like annotations, types, built-ins, etc.). A natural
question is whether such features could be made official or standardized in the languages
themselves. My perception is that this is a tricky proposition and unlikely to happen, on
multiple counts.

First, there is no clear formalism for security mechanisms yet. In my approach the security
properties for high-level and intermediate programs depend on the countermeasures being
applied (through the intermediate structural properties), which is unlikely to generalize well
to language-level features unless recurring patterns arise long-term.

Second, hardware attacks and countermeasures are in an arms-race dynamic that program-
ming languages couldn’t keep up with. Consider the huge can of worms Spectre [Koc+19]
opened, with new micro-architectural attack vectors being found year after year. There is
no single complete counter, so protections are best-effort and require continuous updates by
a specialized community of both academics and industry experts. This process is comically
out of tune with the way modern general-purpose or system programming languages evolve.
Even Rust, which is lauded for its rapid adoption, has still only chipped the dominance of C in
embedded development, despite addressing memory management questions that are better
understood than hardware security—the time scale just doesn’t match.

Finally, updating programming languages always leaves large amounts of legacy code behind,
making their adoption into existing projects difficult in practice. Compiler extensions also
suffer from that shortcoming but at least invite automated annotations and analyses that
reduce the hardening effort.

3.4. Examples and use cases

Let’s now go through a couple of examples illustrating the ways in which increased control of
the compiler can serve security applications. In this chapter, I’ll just introduce the examples
and show the shortcomings of a stock compiler. Section 5.3 will present ways in which Tracing
LLVM can accomplish the stated objectives. Table 3.3 lists the examples.

| will loosely group them in three categories based on the objective:

« Take the source literally refers to examples in which the source program accurately
captures the desired property (via the abstract C machine’s golden execution), and there is
an “obvious” way to lower the code, but the compiler may not do it due to inner complexity.

+ Control lowerings refers to examples in which the target code can be obtained by lowering
abstractions in a specific manner, such as by using particular instructions or registers.

3.4. EXAMPLES AND USE CASES 45

Take the source literally Intro Solution Contribution
Strict variable accesses 341 531 New
Sequencing at variable writes 342 532 Solved by Vu
Control lowerings Intro Solution Contribution
Avoid optimizations during lowerings 3.4.3 5.3.3 Made easier
Map source variables to registers 344 534 New

Trace source to target code Intro Solution Contribution
Cleanup sensitive registers 345 535 New

Split register allocation 346 536 New

Table 3.3: Summary of the examples discussed in Chapters 3 and 5

+ Trace source to target code refers to examples in which the desired property in the target
code is expressed by linking it back to the source code, such as hardening code relating to a
given source variable or expression.

Some examples rely on a macro I0 which produces a side-effect of its first argument and
returns it. Writing I0(n) forces the compiler to compute n and blocks optimizations such
as constant propagation. The macro itself expands to an assembly comment “I/O modifies
(register)”. Here is its definition (see Section 6.2.2 for an explanation of the inline assembly):

// I0: int -> int
#define I0(_var) ({ \
asm__ volatile ("# <I/0 modifies %0>": "+r"(_var)); \

var; \

D

This macro is only used to keep relevant code alive (for the sake of writing short example
code) or as pre-protections in examples in which the focus is elsewhere. While its behavior
is nearly identical to a Tracing LLVM feature (specifically __builtin_tracing_opaqueio), I0
should be interpreted as scaffolding for the examples and never as a part of the solution.

3.4.1. StHICE VAFIADIe ACCOSSES - nnviniit e e

« Category: Take the source literally

« Requirement: Keep accesses to a variable as in the source code, without forcing it to memory
« Motivation: Preserve logic surrounding redundant variables like CFI signatures

« Failures: Optimizations break requirement; volatile uses memory

One way source semantics are modified by compilers is by simplifying away the redundancies
introduced by countermeasures. Programs protect against this by creating artificial semantic
variations around redundant code. For Control-Flow Integrity (CFl) schemes, which focus on
maintaining and checking a control-flow signature, a natural option is to obfuscate accesses
to the signature variable, as all CFl logic is based on reading or writing it.

Figure 3.4 shows a dispatcher for a “get key” operation parametrized by key size and protected
with the chain-of-trust CFl scheme by Bonnal et al. [Bon+23] (it’s simplified from an example

46 CHAPTER 3. THE VISION: THREADING SECURITY THROUGH ABSTRACTIONS

/* Signature values for each section. C@1 is the transition C0 -> C1 %/
enum { C@ = 0xb7, C1 = @x2a, Co1 = Co ~ C1 };

void get_key_1(int key_size) {
int volatile CoT = CO;

CoT *= key_size;

switch(key_size) {

case 128: get_key128(); CoT *= (C01 * 128); break;
case 256: get_key256(); CoT *= (C01 * 256); break;
default: abort();

}
if(CoT != C1) abort();

}
Figure 3.4: Strict variable accesses: source code using chain-of-trust
get_key_1: xori a0, a0, 29 # Co~C1”128
addi sp, sp, -16 j .end
SwW ra, 12(sp)
1i al, Ooxb7 # Co .case256:
SW al, 8(sp) # 8(sp) is CoT call get_key256
1w a0, 8(sp)
CoT *= key_size xori ad, a0, 413 # C0*C17256
1w al, 8(sp)
xor al, al, a0 .end:
1i a2, 256 SwW a0, 8(sp)
SW al, 8(sp) # Check that CoT == C1
1w ad, 8(sp)
Dispatch key_size li al, 0x2a # C1
beq a0, a2, .case256 bne a0, al, .abort
1i al, 128 1w ra, 12(sp)
bne a0, al, .abort addi sp, sp, 16
ret
.casel128:
call get_key128 .abort:
1w a0, 8(sp) call abort

Figure 3.5: Strict variable accesses: slow assembly with volatile (-03)

in that paper). Here, the objective is to hide the values read from or written to the signature
variable CoT to avoid optimizations. (Chain-of-trust incorporates program data like key_size
in the signature but peephole optimizations can still see through this.)

The original solution is to make the CoT variable volatile', which makes all accesses side-effects
and eliminates the compiler’s assumption that each value read is the last value written. This
successfully gets the compiler to keep all the checks; Figure 3.5 shows the resulting assembly.

"More accurately, to access it through a volatile pointer, which leads to the same result.

3.4. EXAMPLES AND USE CASES 47

Unfortunately, even when optimizing aggressively at -03, volatility forces the variable on the
stack, which is detrimental for performance and a potential security issue for other attacks
(as buses and memory are generally more vulnerable to observation and interference than
CPU registers).

3.4.2. Sequencing at variable writeso

« Category: Take the source literally

« Requirement: Partially enforcing a sequence on normally pure operations

« Motivation: Preserving the order of control-flow checks with respect to surrounding code
o Failures: Optimizations break requirement; -00 produces slow code with no guarantees

This example is motivated by Step Counter Incrementation [HLB19], a CFl scheme in which,
among other things, progress along straight sections of code is tracked by counters. Figure 3.6
shows the code for a sequential PIN verification function protected by SCI to detect if a digit
check is skipped.

#define SCI_CHECK(_n) { SCI = IO(SCI) + 1; ASSERT(SCI == _n); }

int verify_pin_1(uint8_t *userPIN, uint8_t *secretPIN) {
int valid = true, SCI = 0;
SCI_CHECK(1); if(userPIN[0] != secretPIN[0]) valid = false;
SCI_CHECK(2); if(userPIN[1] != secretPIN[1]) valid = false;
SCI_CHECK(3); if(userPIN[2] != secretPIN[2]) valid = false;
SCI_CHECK(4); if(userPIN[3] != secretPIN[3]) valid = false;
return valid;

Figure 3.6: Sequencing at variable writes: source code with Step Counter Incrementation

For this demonstration, the step counter is opacified at each step through an identity 1/O so
the compiler doesn’t remove the entire scheme. However, no attempt is made yet to ensure
the proper interleaving of SCI checks and PIN digit checks, which is the focus of this example.

Figure 3.7 shows the assembly code produced by LLVM at -01 (which is identical to -03 here).
The back-end decides to rewrite the element-wise array comparison into a branchless test.
The bitwise difference is computed for each index with a xor instruction, then folded over
the entire array with three or instructions. If the result has any non-zero bits, then the array
differs for some index.

In the process of rewriting the comparison, the compiler lumps together the SCI_CHECK() calls
at the beginning of the function, rendering the scheme effectively useless. In fact, after the
rewrite a placement of the checks in-between the logical operations that would be equivalent
to the source sequencing doesn’t even exist. Producing a correct output here will require the
compiler to keep each index test separated.

As a side remark, the compiler also optimizes the SCI variable in subtle ways, leading to no
actual incrementations. Seeing that the assertions are all “I0(SCI)+1 == _n” where _nis a
constant, LLVM subtracts 1 from the right-hand-side and delays the incrementation of SCI

48 CHAPTER 3. THE VISION: THREADING SECURITY THROUGH ABSTRACTIONS

verify_pin_1: 1bu a4, 1(a0)
addi sp, sp, -16 lbu a5, 2(ao0)
SW ra, 12(sp) lbu a2, 2(al)
1i a2, 0 lbu a3, 1(al)
<I/0 modifies a2> lbu a0, 3(a0)
bnez a2, .abort lbu al, 3(al)
1i a2, 1 xor a2, a2, a5
1i a3, 1 xor a5, a6, a7
<I/0 modifies a3> xor a3, a3, a4
bne a3, a2, .abort xor a0, a0, al
1i a2, 2 or a0, a0, a2
li a3, 2 or a3, a3, ab
<I/0 modifies a3> or a0, a0, a3
bne a3, a2, .abort seqz a0, ao
1i a2, 3 1w ra, 12(sp)
1i a3, 3 addi sp, sp, 16
<I/0 modifies a3> ret
bne a3, a2, .abort .abort:
lbu a6, 0(a0) call abort
1bu a7, 0(al)

Figure 3.7: Sequencing at variable writes: reordered assembly (-01)

until after the test. However, code beyond the assertion is unreachable unless the condition
holds, which allows LLVM to infer that I0(SCI) did indeed return _n-1. Thus, there is no need
to store the updated value of SCI at all, and no need to perform the incrementation either;
LLVM just materializes the propagated constant at the next point of use with the following
logic (but at LLVM IR level).

SCI = 0;
// ... check #0 ...
SCI = IO(SCI);
ASSERT(SCI == 0); /* simplified from _+1 == 1 %/
/* since we didn't abort, we know SCI==0 */
// SCI = SCI + 1; /* constant-propagated to SCI==1 %/
// ... check #1
SCI = I0(1); /* simplified from IO(SCI) =*/
ASSERT(SCI == 1); /* simplified from _+1 == 2 %/

| won’t address this effect directly; it comes up again in the complex PIN verification program in
Section 5.4, but the optimization won’t apply there (as the panic handler isn’t non-returning).

3.4.3. Avoid optimizations during lowerings

« Category: Control lowerings

 Requirement: Disable or bypass fixed optimizations performed during lowerings
Motivation: In LLVM, back-end duplication and literals obfuscation

Failures: Systematic failure, even at -00

3.4. EXAMPLES AND USE CASES 49

The next example illustrates the specific threat of optimizations mixed in with lowerings, of
which there are mostly two in LLVM:

1. Immediate constants propagation when lowering the clang AST to LLVM IR;
2. Common Subexpression Elimination in blocks in the DAG-based instruction selector.

For the first lowering, let’s turn to Figure 3.8, which is an attempt at obfuscating a constant
by splitting it into two independent sets of bits’.

#define CONSTANT 0x00coffee
#define CONSTANT_a (CONSTANT & 0xa5ababab)
#define CONSTANT_b (CONSTANT & ~0xab5aba5ab)

uint32_t get_constant_1(void) {
return CONSTANT_a + CONSTANT_b;

Figure 3.8: Avoid optimizations during lowerings: source code with obfuscated constant

In resulting IR in Figure 3.9 the entire expression gets constant-folded, and this is key, by the
lowering to LLVM IR, making it one of the rare instances where even -00 will optimize, despite
producing a function with the optnone attribute® which explicitly turns off optimizations.
(This happens because clang uses an LLVM IR builder class whose instruction constructors
greedily fold into constants whenever possible, regardless of optimization settings.) The
desired behavior is to preserve the addition while propagating the masks.

define 132 @get_constant_1() #0 {
ret 132 Oxcoffee

}

attributes #0 = { noinline optnone } ; ... and many more

Figure 3.9: Avoid optimizations during lowerings: LLVM IR with folded constant (-00)

For the second lowering, consider Figure 3.10, which is the LLVM IR code for a function with
a duplicated addition and the same attribute for disabling optimizations, optnone.

Here, the lowering to an instruction selection DAG coalesces the two additions because LLVM’s
implementation of the selection DAG data structure automatically merges identical nodes to
enforce a uniqueness invariant. Figure 3.11 reveals this by showing the entry block’s selection
DAG just after construction®.

The DAG represents a single basic block; its internal nodes are computations, its leafs are
operands. The edges represent data dependencies (black lines) or control/ordering depen-
dencies (dashed blue lines). Nodes have their inputs on the top and outputs at the bottom;
looking at the highlighted add node (in red), the upper @ and 1 cells represent its inputs, and

ZLiterals encoding is not so common in fault countermeasures. The idea comes from protections against
reverse-engineering; see for instance https://tigress.wtf/encodelLiterals.html.

3https://1lvm.org/docs/LangRef . html#function-attributes

*Actually, just after type legalization. The initial combining pass cleans up some dead nodes.

https://tigress.wtf/encodeLiterals.html
https://llvm.org/docs/LangRef.html#function-attributes

CHAPTER 3. THE VISION: THREADING SECURITY THROUGH ABSTRACTIONS

50

define i32 @f(i32 %x, 132 %y) #0 {
%z1 = add 132 %x, %y
%z2 = add 132 %x, %y
%eq = icmp eq 132 %zl1, %z2
br i1 %eq, label %bb.ok, label %bb.err

bb.ok:
ret i32 %zl

bb.err:
call void () @abort()

unreachable

}

attributes #0 = { noinline optnone }

Figure 3.10: Avoid optimizations during lowerings: LLVM IR with duplicate add

(EntryTokenw (Register %q (Register %2\

Lch | glue) i32

JU 2
/

I

e N p
! o | 1)Y o | 1
I
! CopyFromReg CopyFromReg
:' i32 | ch) i32 | ch)
\

-
— 15

\
' Register %0
Y - add
\ 132 -
\\ ‘} 132

~
~

\

\

2 1_ RZ Constant<0>w (BasicBIock<bb.err>w
opyloReg k 32 J4L " J
N/ A /}

7

\~/0—|71 2! (BasicBIock<bb.ok>w

brcond l\ o J

ch ‘ \\
\ \

T

br

ch
A

GraphRoot

Figure 3.11: Avoid optimizations during lowerings: Selection DAG with merged add

3.4. EXAMPLES AND USE CASES 51

the lower 132 cell is the type of its output. The type ch represents the chain token which is
used for ordering (and models side-effects, among other things). Here, ignoring the registers
and copies thereto/from, we are left with a single addition (add), and one comparison to zero
(brcond) before we end the block on a jump (br) to the success block, instead of having both
additions and a fault-detecting comparison as intended.

These lowering-related transformations are uniquely tricky because unlike dedicated opti-
mization passes, lowerings can’t be disabled, so the optimizations can only be blocked by
changes to the compiler.

3.4.4. Map source variables to registers

« Category: Control lowerings

« Requirement: Assign all of a variable’s live ranges to a single, consistent register
+ Motivation: Runtime introspection, interfacing with hardware

o Failures: Variable’s identity is lost in translation at SSA

Looking deeper now at the transformations inherent to abstraction lowerings, let’s consider
storage mechanisms. Storing small pieces of data with function lifetime is done with local
variables in C and, pressure notwithstanding, in CPU registers in RISC-V assembler.

For this example, I'll repurpose the chain-of-trust function from Figure 3.4. The CFI signature

CoT is a native-sized integer and remains alive through the entire function. It may be relevant

to store it in a single register for the entire function:

+ to provide runtime inspection without a full debugger and debug information;

« to simplify interfaces with hardware, where a fixed register could serve as an implicit
argument in jumps and other accelerated updates or checks;

« or for inter-procedural CFl, to chain it across calls as an extension of the calling convention
without materializing it explicitly as a formal argument.

However, LLVM doesn’t construct a one-to-one correspondence between the variable and a
target register. Consider the intermediate code shown in Figure 3.12, which, for the sake of
demonstrating the issue without removing the protection, is compiled with -00 followed by
just the SSA register promotion pass (mem2reg).

define void @get_key_1(i32 %key_size) { case256:
entry: call void @get_key256()
%xor = xor 132 183, %key_size %xor3 = xor 132 %xor, 413
switch 132 %key_size, label %abort [br label %end
132 128, label %casel128
i32 256, label %case256] end:
%CoT = phi 132 [%xor3, %case256],
casel128: [%xorl, %casel128]

call void @get_key128() %cmp = icmp ne 132 %CoT, 42
%xor1 = xor 132 %xor, 29 ;
br label %end

Figure 3.12: Map source variables to registers: IR with variable identity lost (-00 -mem2reg)

52 CHAPTER 3. THE VISION: THREADING SECURITY THROUGH ABSTRACTIONS

The construction of the SSA form of the intermediate program (which is at the heart of the
compiler’s design) makes each live range of CoT a different SSA value, leading to four different
“variables” %xor, %xor1, %xor3 and %CoT. The relationship between these values (that they are
all assigned to CoT) is lost at the very first step.

Similar to the “Strict variable accesses” example, disabling optimizations or using volatile
lead to CoT being stored on the stack. In fact, the optimization that promotes CoT to a register
is also the one that breaks its live ranges apart.

3.4.5. Cleanup sensitive registersoooiiiiiiiiiiiiiiiii i

« Category: Trace source to target code

+ Requirement: At end of function, zero all registers that held sensitive data
+ Motivation: Modular reasoning for side-channel resistance

« Failures: By the time registers have been allocated, sensitivity info is lost

As with any countermeasure, reasoning about data leaks for side-channels is easier if leaks
can be contained to a comfortable unit of code such as a function. This can be tricky for
micro-architectural or physical side-channels due to hidden state, but in any case one has
to start at the architectural level, with the base requirement that a function manipulating
sensitive data erases it before returning so it can’t be observed by someone else.

This issue of secure erasure is usually presented on arrays or other buffers stored in memory, as
memory behaves predictably and the leak can be modeled at a high-level. Naturally, sensitive
values can also leak through registers, but erasing them is a much trickier problem. Figure 3.13
demonstrates the limitations of attempting this at a high level of abstraction.

/* T1 contains sensitive data */
int compare_arrays_1(int *T1, int *T2, unsigned N) {
int equal = true, T1i;

for(unsigned i = @; i < N; i++) {
T1i = T1[i] + 1;
if(T1i = T2[i])
equal = false;

T1i = o;
return equal;

}

Figure 3.13: Cleanup sensitive registers: C source code with sensitive array T1

The (imaginary) function compare_arrays checks whether an “obfuscated” array T1 containing
sensitive data is equal to an array T2 containing non-sensitive data. To keep the example short,
the obfuscation is limited to adding 1. While executing this function, the values of individual
array elements T1[i] are read and decoded, and thus the storage for these intermediate
values, T11, is zeroed upon leaving the function.

3.5. EXAMPLES AND USE CASES 53

The assembly code generated with -01 is shown in Figure 3.14 (-03 happens to be identical).
Unsurprisingly, the assignment T11 = 0 is eliminated due to being dead, as C doesn’t have a
notion of shared local state between functions.

compare_arrays_1: addi a4, a4, -1
a0 is T1, al is T2, a2 is n and a3, a3, a4
1i a3, 1 addi a2, a2, -1
beqz a2, .end addi al, at, 4

.loop: addi a0, a0, 4
Load secret into a4 bnez a2, .loop
1w a4, 0(ao0) .end:
1w a5, 0(al) # No zeroing!

Branchless condition using a4 # Returns while a4 is sensitive.
addi a4, a4, 1 mv a0, a3

xor a4, a4, ab ret

snez a4, a4

Figure 3.14: Cleanup sensitive registers: Leaky assembly (-01)

The inner equality check is rewritten to a branchless form, leaving only a minimal leak of
register a4, which at the time of returning only carries one bit of information. However, with
no safeguards these leaks can quickly spiral out of control, which I'll showcase in Section 5.4
(with a PIN verification function which basically leaves the entire secret PIN in registers for
its callers to see).

The expected behavior is for any registers touched by the load or the “de-obfuscation” and
not alive at the return statement to be reset to zero. Naturally, this should be done at a
later compilation stage, at or around register allocation. However, it’s not easy—sometimes
not possible—to identify sensitive data on these late representations because the source
information is lost.

3.4.6. Split register allocationoooiiii

+ Category: Trace source to target code

« Requirement: Allocate sensitive and non-sensitive values to different registers
+ Motivation: Special hardware handling of sensitive data, facilitate validation
« Failures: By the time registers have been allocated, sensitivity info is lost

This final example is a variation on the array comparison program from “Cleanup sensitive
registers”. This time, we want sensitive and non-sensitive data to be allocated to disjoint sets
of registers (ignoring fixed registers for function arguments and return values). The compiler
won’t do it on its own, and unsurprisingly this doesn’t happen in Figure 3.14.

Nonetheless, this property would be of interest, mainly for interfacing with hardware. Indeed,
if hardware knows which registers hold sensitive data then it can more easily reject leaky
behaviors, select constant-time implementations of operations, or other countermeasures.

54 CHAPTER 3. THE VISION: THREADING SECURITY THROUGH ABSTRACTIONS

3.5. Discussion of the examples

At this stage, we can already highlight the primary angles I’ve been describing.

3.5.1. End-to-end management of securitycooii

In most of these cases we need to concern ourselves with the entirety of the abstraction stack,
from C to IR to the instruction selection DAG and various details of Machine IR.

Three examples revolve around variables (3.4.1, 3.4.2, 3.4.4) and suffer from the notion being
lost as soon as we lower to SSA, despite the fact there is a somewhat obvious direct lowering
from C to assembly that would satisfy their needs.

Another two examples deal with source data that needs to be protected at a lower level (3.4.5,
3.4.6), which doesn’t necessarily require a one-to-one mapping between source and target but
requires some sort of mapping to implement the passes (similar to debug information). Such a
mapping needs to be maintained for the whole compilation process.

And of course, the lowering optimizations example (3.4.3) demonstrates that it may only
take one lowering to defeat a countermeasure. These problems naturally get worse the more
representations there are.

3.5.2. Threats from lowerings rather than optimizations
In these examples, lowerings present three types of threats.

« Unskippable optimizations: | showed two basic ones, but the problem is more general.
For instance, one can engineer the lowering from clang to LLVM IR (the construction of the
SSA form) to also perform Global Value Numbering [Lem23], an optimization that would
eliminate complex redundant code on the spot.

« Inadequate abstractions: the attempt to erase sensitive data in Section 3.4.5 fails because
it goes through C variables, which is not an adequate abstraction. Using C variables fails
to account for temporary expressions such as T1[i] which are eventually materialized as
SSA values or assembly registers and need protection too. Ultimately, sensitivity here is a
data-flow property and assigning variables can’t capture data-flow in C.

« Improper lowering of adequate abstractions: even when the source code expresses
the right property, such as the desired ordering of SCI checks and surrounding code in
Section 3.4.2, the compiler may not preserve it. In this case, the back-end legally trades it
off for performance.

Tracing LLVM was designed around this focus on lowerings and abstractions. Optimizations
are still a threat, but they can be dealt with mostly predictably by means of opacification; this
is because opacification is set up at a semantic level so an optimization breaking it would be
functionally invalid. I’ll come back to this in Section 5.2.

3.6. CHAPTER CONCLUSION 55

3.6. Chapter conclusion

This chapter has hopefully motivated my thesis that the compiler occupies a central role in
software contributions to security countermeasures against hardware vulnerabilities. Even
when there’s no compiler interference to avoid, the support that a security-aware compiler
can provide by generating predictable code, maintaining connections between source and
assembly, or interfacing with the toolchain would be very valuable. The immediate target of
this thesis is to block interference from optimizations and lowerings, and provide basic tools
for tracing relevant program elements through abstractions. These goals will be demonstrated
in Chapter 5 through my main contribution of Tracing LLVM.

Now for a direct answer to this chapter’s research questions.

— What are the lowest-hanging targets to improve the reliability of software protections?

In my opinion, these are the hurdles caused by the relative obscurity of the compiler on matters
of security: its interface with high-level code (e.g. annotations specification), its internal
behavior on optimizations and lowerings, and its interface with low-level code (including on
fine details useful for co-designed countermeasures).

— How could a high-level compiler contribute to low-level security?

Even if the attacks are low-level, co-designed countermeasures can greatly benefit from
carefully-constructed assembler code, whether it is through eliminating indirect jumps, sepa-
rating sensitive and non-sensitive data, or pre-computing validation data (as will be showcased
in Chapter 4). This would constitute, in my opinion, a credible lightweight alternative to the
full-featured hardware designs.

Countermeasures at the lowest
levels of software

n Section 3.1.3, | proposed software/hardware co-design as a flexible solution against
low-level, typically micro-architectural attack models, with software handling the
logic and hardware providing base defense mechanisms and acceleration. This chap-
ter demonstrates this idea by describing, implementing and proving a co-designed
countermeasure against fetch skips, a micro-architectural refinement of instruction skips.

Key to this contribution is formalizing and proving the countermeasure. Indeed, the natural
interface between software and hardware, the ISA, doesn’t capture the intricate details of
micro-architectural attacks (or they’d be assembly-level). Thus, a proper formalization and
proof requires including hardware components in the formal model. Of course, verifying
hardware is not a novelty by any means; the non-trivial part here is mixing software and
hardware in a single semantic model that’s guided by assembly syntax.

As we’ll see, the co-designed approach reaches a compelling sweet spot: we counter an accurate
model, with limited complexity on both software and hardware sides, good time performance,
proven full coverage against single-fault attacks, and significant coverage against multi-fault
attacks whose limitations are clearly outlined. The main costs are the code size and the need
to involve hardware, the latter of which at least is already expected in the industry.

This chapter is largely reworded content from my CC’24 paper “From low-level fault modeling
(of a pipeline attack) to a proven hardening scheme” [MDG24]. The implementation doesn’t use
any fancy tracing features as the work on Tracing LLVM had not started at the time, but it
presents enough compilation complications to motivate them.

The chapter is organized as follows. Section 4.1 formalizes the fault in an extended assem-
bler language. Section 4.2 proposes a countermeasure based on a hardware extension and
a compile/link-time program transformation. From the semantics for the fault, Section 4.3
formalizes a security theorem proven in Appendix A. Section 4.4 describes my implementa-
tion in LLVM and GNU 1d, its security evaluation with emulated fault campaigns, and its
performance evaluation with processor simulations.

Research questions

— Can software still contribute significantly to defeating a micro-architectural fault model?
— How to prove an assembly program secure against a lower attack model?

4.1. FORMALIZING FETCH SKIPS 57

4.1. Formalizing fetch skips

The fault model | want to counter, “fetch skips”, was developed by Alshaer et al. [Als+22]
after analyzing injection campaigns for clock and voltage glitches on ARM and later RISC-V
microcontrollers. The target system is a 32-bit little-endian RISC-V processor with the “C”
extension for compressed instructions (the base case being RV32IC [RV1]), which means it
has a mix of 16-bit and 32-bit instructions. In this chapter, all 16-bit instruction encodings are
prefixed with “c.” to distinguish them from 32-bit encodings. For a quick refresher on RISC-V
syntax and semantics, please see Section 1.2.

Broadly speaking, a “fetch skip” will be a fault in which the processor skips (or replaces) bytes
that should have been fetched from the instruction stream in a given memory access. If these
bytes constitute a single whole instruction, that’ll lead to an instruction skip; if not, then
corrupted or brand-new instructions can make their way through the pipeline. Modeling this
attack and the associated countermeasure will require accounting for memory alignment and
the processor’s internal fetch-decode-execute process.

To ease the presentation, I’ll first describe the program and fault model informally (Sec-
tions 4.1.1 and 4.1.2) and then move to proper operational semantics (Section 4.1.3).

Terminology and notations in this chapter.

« aligned, unaligned: a multiple of 4 bytes; a multiple of 4 bytes plus 2

« line: 4 bytes of data at an aligned address (mimics table representation)

« uy: type of N-bit unsigned integers

+ LSH,MSH : u3» — uqg: least and most significant halves of a 32-bit value

« Structure-like notations {(field) : (type) , ...} and (struct).(field) are used for bit fields and
named collections of values

4.1.1. Informal description of RISC-V programsooiiii,

For this model, RISC-V programs are collections of blocks made of non- or conditionally-
branching instructions, terminated by an unconditional jump'. Figure 4.1 shows the code for
a function g(x) = f(x) + 1 consisting of two blocks, one that calls f (implicitly forwarding
the argument) and one that increments the return value a0 then returns.

The execution of a program will be a sequence of execution steps in which the CPU obtains
the next instruction (with a combination of a buffer read and/or a memory fetch), decodes
it, and executes it. For instance, g executes in 8 steps (ignoring the call to f), with each step
running one instruction and consuming either 2 or 4 bytes of code.

The central behavior of interest here is that there is not always one fetch for one step: certain
instructions are fetched in advance, and others are read by the CPU over two consecutive
fetches. This is because most CPUs always fetch 4 aligned bytes in memory, that is, a line in the
memory layout table. For example, the first step in running g fetches the 4 bytes at address

Traditionally conditional branches would end a block, but here only unconditional jumps do. This difference
is of minor importance and serves to simplify the security proof.

58 CHAPTER 4. COUNTERMEASURES AT THE LOWEST LEVELS OF SOFTWARE

C source code

int g(int x) { return f(x) + 1; }
Memory layout (4 bytes per row)

Disassembled RISC-V code (instruction bytes in gray) 24 c.addi C.sw
’ 41 11 06 c6
g:
24: 41 11 c.addi sp, sp, -16 5g. | auipc (1/2) | auipc (2/2)
26: 06 c6 C.SW ra, 12(sp) 97 00 00 00
call f (linker inserts address later) . jalr (1/2) jalr (2/2)
ra is both target and return address : e7 80 00 00
28: 97 00 00 00 auipc ra, 0
2C: e7 80 00 00 jalr ra, 0(ra) -
30- c.addi c.lw
add 1 to return value a@ of f o b2 40
30: o5 05 c.addi a0, ao, 1 34- c.addi c.ret
32: b2 40 c.lw ra, 12(sp) ’ 41 01 82 80
34: 41 o1 c.addi sp, sp, 16
36: 82 80 c.ret

Figure 4.1: C code, object code, and memory layout of a function g(x) = f(x)+1

ALIGNED-16 UNALIGNED-16
PC PC

y vy

116 L i16

T S rE—— 116: Any 16-bit

Fetch at PC, use 2/4 bytes Read from buffer, no fetch instruction

132: Any 32-bit

ALIGNED-32 UNALIGNED-32 instruction
| ?F _________________ PC y Dashed region:

L 132(1/2) o) 132(2/2) \ 132(1/2) o (mstructiontorun

Fetch at PC, use 4/4 bytes

Fetch at PC+2, use 2 bytes

Figure 4.2: Visual representation of execution step rules

24 and puts them in a decoding buffer, but only consumes the first 2 to execute c.addi. Then,
the second step executes c. sw from the buffer without needing another fetch.

Figure 4.2 shows all the ways a step may use buffered data and/or fetch from memory when
executing one instruction. When PC is aligned (ALIGNED-*), the next instruction is on a new
line, so a fetch is performed. When PC is unaligned, 2 bytes of instruction data are left in the
decoding buffer. If they form a 16-bit instruction (UNALIGNED-16), the CPU runs it immediately
without a fetch. If they form the first half of a 32-bit instruction (UNALIGNED-32), a fetch is
performed at PC + 2 to obtain the second half and piece together the opcode. Each step then
increments PC by 2 or 4, setting up the next cycle. This description accounts for the first
stages of the pipeline while collapsing all the execution and write-back stages, which are not
relevant in this particular fault model.

4.1. FORMALIZING FETCH SKIPS 59

a-4: c.sw add (1/2) PC —,
) s e | | add (1)
fskipped) | {skipped) a: add{2/2) c.xor + S32(1)!
a+4k: c.addi c.ret at4: E_nlx;v_(i ;2')"5 1w (2/2)
a4 c.'sw add'(1/2) Forged instruction (nonsensical):
a: C.SW add (1/2) | + S&R32! add (1/2) 1w (1/2)
a+4: 1w (1/2) 1w (2/2)

Figure 4.4: Forging a 32-bit instruction by
Figure 4.3: Effect of fetch skip attacks attacking an UNALIGNED-32 step

4.1.2. Informal description of fetch skips

Fetch skips refine the traditional instruction skip (briefly discussed in Section 2.1.1 and ad-
dressed by multiple countermeasures from Table 2.3) by accounting for this mismatch between
instructions and fetches. In the authors’ original work, about 80% of faults injected by clock
and voltage glitches were fetch skips. Because the model is more accurate with respect to
physical effects, a system protected against fetch skips will be more secure in practice than a
system protected against plain instruction skip.

The different types of fetch skips are illustrated in Figure 4.3. In this model, attempts by the
CPU to fetch at an address a may result in three outcomes:

« Normal behavior: The memory contents at address a are returned.

« Skip 32 bits, k times (S32(k)): The memory contents at address a + 4k are returned, and PC
is incremented by 4k.

« Skip and repeat 32 bits (S&R32): The last fetched line (usually at a — 4) is returned, and
the contents at address a later become the last fetched line.

A brief intuition as to why this happens is as follows. A typical fault leading to a fetch skip
would be a clock glitch, where a short clock cycle is incorrectly introduced in the clock signal.
This cycle is not long enough for CPU logic to propagate entirely. The S32(k) fault (observed
for kK = 1,2) might happen if the decoder is unable to decode quickly and doesn’t issue an
instruction for the execution stage?. The S&R32 fault might happen if a fetch is started during
the short cycle but doesn’t complete in time, leading the decoder at the next cycle to capture
the previous contents of the fetch stage’s output register.

For the countermeasure, the threat model is a “level N attacker” that can independently
attack every fetch with either one S32(k) attack (1 < k < N) or one S&R32 attack.’

The connection between fetch skips and the memory layout of instructions creates a new

2[Als+22] observes that the CPU sometimes runs a nop during a $32(k) attack, sometimes not. This modeling
difference is accounted for in the countermeasure.

3| landed on these patterns because the behavior of more complex combinations cannot be inferred
from [Als+22] without more hardware details.

60 CHAPTER 4. COUNTERMEASURES AT THE LOWEST LEVELS OF SOFTWARE

effect of instruction forging, illustrated in Figure 4.4, that cannot be captured by the usual
“instruction skip” model. Here, PC = a—2 and the decoding buffer contains the first half of a 32-
bit unaligned add instruction. The CPU fetches at a to obtain the second half (Figure 4.2, case
UNALIGNED-32). Attacking this fetch with S32(1) results in an unrelated 16-bit value (the start of
an 1w) being used to complete the add, causing the execution of an opcode not originally in the
program. This opcode can be “anything” (including illegal). Alshaer et al. [Als+22] demonstrate
how this enables new vulnerabilities (e.g. by forging control flow instructions).

Once PC is out of sync, forging can continue without repeated fault injection. Continuing
with Figure 4.4, after running the forged instruction we get PC = a 4 6. Now the second half
of 1w is interpreted as its own 16-bit or (first half of) 32-bit instruction. Thus, the attack carries
over to the next line; in the worst case, execution might not resynchronize with the intended
sequence of instructions until a jump (which resets PC the start of an intended instruction).

4.1.3. Operational semantics of RISC-V programs with fetch skips

To design and prove a countermeasure against such a low-level attack, it is helpful to reflect
the faults’ effects into language features, and study the updated language with semantic tools.
Let’s now put formal definitions on this CPU and attack models with operational semantics.
To avoid modifying this later I'll give the full model with countermeasure included right away,
and explain the components related to hardening in Section 4.2.

Definition 1.
An instruction i is a 16- or 32-bit integer (i.e. a value of type uig or u3y) corresponding to a
RISC-V opcode.” The size of the instruction in bytes is written ||i|| (equal to either 2 or 4).

A block bb is a nonempty sequence of instructions loaded in memory at a 2-aligned address.

A program P is a collection of non-intersecting blocks, supposed well-formed in that every jump
points to the beginning of a block.

Fetches are memory reads that update the fetch output buffer called p, and sometimes PC (as
a side-effect of S32(k) attacks).

Definition 2.
A fetch is a statement (PC, p) a = d (PC', p') representing a load of 32 bits at 4-aligned address
a : uzy yielding the “data” value d : u3y, updating PC and the fetch buffer p in the process.

Figure 4.5 shows the semantic rules for deriving fetches.

« NOFAULT is the normal behavior. Loading address a yields [a], the contents of memory at a;
this value is stored in the fetch buffer p, and PC is not affected.

« S32(k) is the generalized “skip 32 bits” attack: the program counter advances 4k bytes before
the fetch is performed.

+ S&R32 is the “skip-and-repeat 32 bits” attack: the fetch is performed but the loaded data
only reaches p at the next fetch, and the previous value of p is used for the current line.

“There is no risk of type confusion because 16- and 32-bit instruction encodings differ on their lowest 2 bits.

4.1. FORMALIZING FETCH SKIPS 61

NOFAULT S32(k) S&R32
1<k<N p # la]

(PC,p) a = [a] (PC,[a]) (PC,p)a = [a+4k] (PCH+4k, [a+4k]) (PC,p)a = p (PC,[a])

Figure 4.5: Semantic rules for fetches

Before formalizing steps, | need one final element which is a description of the processor state.
Since the attack and countermeasure are only concerned with fetch logic, this only needs to
include p and standard architectural state; no other micro-architectural elements are needed.

Definition 3.

A program state is a quintuplet (PC, p, d, o,), where

« PC: u3 is the program counter;

* p :u3y is the last row fetched from code memory (fetch output buffer);

« 0 : u3p is the current 32-bit value being decoded (decoder working buffer);

« o describes registers associated with the countermeasure, detailed in Section 4.2;
« «: u32[32] is the architectural state (registers x0...x31) as an array of 32 values.

For simplicity, memory is not included; it could be handled in « like registers. Note that p and
d are 32-bit values and may not necessarily be legal instructions. From there, an execution is
simply a series of state-updating steps ending in program termination.

Definition 4.
A step is a statement describing the execution of a single instruction, written (PC, p, §, 0,) — r
where r is either a program state or one of two termination reasons:

« L, denoting an exception or crash;
« end(«), denoting successful completion with final state c.

An execution is a sequence of program states ending with a termination reason, such that all pairs
of consecutive elements are related by a step:

1
PC,p,o — oo = (PCyy, P, Oy Oy Qi) —
(PC.p.6,0.0) = o = (PCoopdomen) > {
All the alignment and decoding logic lies in how steps are constructed; the rules are given in
Figure 4.6 and correspond directly with the visual illustration from Figure 4.2.

+ ALIGNED-* are the cases where PC is aligned. They require a fetch to load the next 32 bits of
code. Either ALIGNED-16 or ALIGNED-32 will then apply depending on whether the first 16 bits
of the loaded word constitute a 16-bit instruction or the first half of a 32-bit instruction.

« UNALIGNED-16 is the case where PC is unaligned, and the two unused bytes remaining in ¢
constitute a 16-bit instruction. This is the one case in which no fetch is needed to decode
the next instruction; thus steps using the UNALIGNED-16 rule can’t be faulted by a fetch skip.

« UNALIGNED-32 is the last case, where PC is unaligned and the remainder of § forms the start
of a 32-bit instruction. Here a fetch is needed to load the next line and get the other half of

62 CHAPTER 4. COUNTERMEASURES AT THE LOWEST LEVELS OF SOFTWARE

the instruction. This is the only case in which the instruction to run is computed based on
two different fetches, which presents the most opportunities for attacks.

+ CHECKSUM-DELAY-SLOT (which is triggered by ¢.CCSDS # 0) is an extension from the counter-
measure and will be discussed in Section 4.2.

The [-] and [-].cs functions represent the semantics of individual instructions; they return
either an updated triple (PC, 0,) or a termination reason. Both are oblivious to p and o
(which are micro-architectural implementation details) so the e function recombines their
architectural output with the new p and §. Notice how p is exclusively passed around the
fetch statements (as it represents internal state of the fetch unit) while § holds the fetched
values seen by the decoder.

The formal definition of instructions’ semantics is provided in Appendix A. For now, they only
capture the usual RISC-V behavior (i.e. update registers in o, increment PC by 2 or 4).

ALIGNED-32 ALIGNED-16
PC aligned (PC,p) PC = § (PC', p') PC aligned (PC, p) PC = § (PC', p')
0.CCSDS =0 LSH(d) is a 32-bit leader’ 0.CCSDS =0 LSH(9) is a 16-bit ins.’

(PC,p, _,0,a) = [0](PC',0,a) e (p',8) (PC,p,_,0,a) — [LSH(0)](PC', 0,) e (p',0)

UNALIGNED-32

PC unaligned MSH(4) is a 32-bit leader’
0.CCSDS = 0 (PC,p) PC+2 = &' (PC',p)

(PC, p,d,0,) — [MSH(8)+2'LSH(8)](PC', 0,) @ (p, &)

UNALIGNED-16 where
PC unaligned 0.CCSDS = 0 (PC,0,a) ® (p,d) = (PC, p, 0,0,)
MSH(J) is a 16-bit ins.’ Le(pd) =1
(PC, p, 0,0,) — [MSH(0)](PC, 0,) ® (p,6) end(a)e(p,d) = end(a)

CHECKSUM-DELAY-SLOT
PC aligned .CCSDS # 0 (PC,p) PC = § (PC',p)
(PC, p, _,0,a) — [0.CCSDS]|ces(PC’, 0, v, 0) @ (', 0)

Figure 4.6: Semantic rules for execution steps

The step rules are exclusive, so execution is deterministic for any given attack sequence. For
example, attacking the fetch at 9x30 when running g from Figure 4.1 produces this execution:

5As per the RISC-V ISA [RV1], a 32-bit instruction leader is a value i : ujg such that i = 3 [4] and a 16-bit
instruction is any other 16-bit value.

4.2. A CO-DESIGNED COUNTERMEASURE 63

Secure RISC-V assembly (numbers on the right refer to lines of Algorithm 1 that added the instructions)

g: # PC >= 0x40000 is a protected region

400e4: 41 11 c.addi sp, sp, -1

400e6: 06 c6 C.SW ra, 12(sp)

400e8: 97 00 00 00 auipc ra, @ # auipc was relocated

400ec: ob 64 00 00 ccscallb 8 # checksum was set, LSB flipped (22,10)
400f0: e2 75 06 c6 .word 0xc60675e2 (22,11)
400f4: e7 80 00 fb jalr ra, -80(ra) # jalr was relocated

400f8: 02 90 c.ebreak # repeats 8 times (28)
40108: 05 05 c.addi a0, ao, 1

4010a: b2 40 c.lw ra, 12(sp)

4010c: 41 o1 c.addi sp, sp, 16

4010e: o1 00 c.nop 19)
40110: ob 10 00 00 ccs # checksum set, no flip needed (24,13)
40114: 51 16 b3 40 .word 0x40b31651 (24,14)
40118: 82 80 c.ret

4011a: 02 90 c.ebreak # repeats 8 times (28)

Figure 4.7: Linked object code for g after hardening (N = 2)

(0x30, po, do, 00, o)

S$32(1) | (0x30, pg) @x30 = [0x34] (0x34, [0x34])
ALIGNED-16 | Runs: c.addi sp, sp, 16

(0x36, p; = [0x34], 1 = [0x34], 09, 1)

UNALIGNED-16 | Runs: c.ret

NP S

(ay.ra = 0x30, py = p1,02 = 01,09, A2)

c.ret jumps to the address stored in register ra, which is still 9x30 because the load from the
stack was skipped, later leading to a stack corruption crash.

4.2. A co-designed countermeasure

This section describes a software/hardware countermeasure, based on code instrumentation
with hardware support. This countermeasure draws inspiration from previous work on in-
struction skips [YS18] and control-flow integrity protections [Zgh+22; MCG22]. However,
complications associated with multi-fault attacks incentivized me to aim for a design that
guarantees security locally (at every block) to keep formal reasoning simple.

By T O L V7= o V4 =), VA

The key ideas of the countermeasure are as follows. Machine code is augmented (“hardened”)
during compilation with checksum protections that react to a fault attack by forcing execution
to trap before the end of the current block. This limits exploits by ensuring a sufficiently
tight window between attack and detection (like most countermeasures it doesn’t prevent

64 CHAPTER 4. COUNTERMEASURES AT THE LOWEST LEVELS OF SOFTWARE

side-effects immediately resulting from the fault, which is inherently difficult due to timing).
Figure 4.7 shows the hardened code for the g function from Figure 4.1.

Hardware is modified to automatically maintain a running checksum (in fact, a simple sum)
of every line of instruction data fetched during the execution of a block, independent of
instruction alignment. Blocks are compiled so that every exit is guarded by a ccs instruction
(from our ISA extension), which traps if the running checksum is not equal to a reference value
computed at compile-time. Blocks thus act as autonomous “jails”, in that faulty executions
causing the checksum to deviate from its expected value cannot leave their current block.

The co-design lies in the cross-checking of information between hardware, whose monitoring
produces a trace (checksum) sensitive to fault attacks, and software, which provides reference
checksum values to interpret that trace.

Section 4.2.2 describes the hardware extension used by the countermeasure. Section 4.2.3
details the hardening algorithm. Section 4.2.4 highlights the subtleties of implementing the
hardening algorithm in LLVM. Finally, Section 4.2.5 discusses the design choices in a more
general context.

As always, one can attempt to attack the countermeasure itself. The security theorem formu-
lated in Section 4.3 and proved in Appendix A shows that no attempt at skipping, repeating or
forging ccs instructions or jumps can succeed, leading to a strong security guarantee.

4.2.2. ISA and hardware eXteNSIONS «.......ouiiuiinii e

The countermeasure is based on a custom ISA extension named Xccs for Code CheckSum (the
“X” denotes an unofficial RISC-V extension). All examples in this section refer to Figure 4.7.
Xccs introduces four new Control and Status Registers (CSR), which together form the o field
of the program state:

+ CCS : u3j is the running checksum for the current block. For example, the region of g from
address 40108 up to (but excluding) 40114 adds up in little-endian to

0x40b20505 + 0x00010141 + 0x0000100b = 0x40b31651

so the value of CCS at 40114 will be 0x40b31651 if no attack is performed.

+ CCSPROT : u3; indicates the PC value at which a protected instruction (jump) is expected
to execute. It is zero most of the time and non-zero for a single step after a checksum is
validated. In Figure 4.7, it is set at 400f4 and 40118.

« CCSD : {E : u7,J0 : ug} holds control information; the enable bit (E) indicates whether
checksum protection is active for the current block (which currently is whenever PC >
0x40000), and the jump offset field (JO) is set by ccscall as described below.

« CCSDS : u3y (“delay slot”) is used to trigger the CHECKSUM-DELAY-SLOT rule. This is needed
because Xccs instructions are encoded on two consecutive 32-bit words, so the second half
shouldn’t be decoded as a normal RISC-V instruction.

The meat of Xccs is the addition of four guard instructions whose encoding is shown in

4.2. A CO-DESIGNED COUNTERMEASURE 65

31 25 24 20 19 15 14 12 11 7 6 0
funct7|rs2|rsi1|funct3| rd| opcode
0 0| 0 001 0 [0001011| ccs
0 0| 0 210 | N |0001011| ccscall N
0 0| 0 101 @ [0001011| ccsb
0 0 | 0 110 | N |0001011| ccscallb N

Figure 4.8: Encoding of Xccs instructions

Figure 4.8, all of which are followed by a 32-bit (checksum) argument:

« ccs (checksum) compares the CCS register with the provided argument and traps if they
differ. Otherwise, it sets CCSPROT = PC + 8 so a jump or function call can execute at the next
step. For instance, at 40114 in Figure 4.7, the dynamic value of the CCS register is compared
to 0x40b31651. When no faults are injected, these are equal, so execution proceeds to the
c.ret instruction.

« ccscall N (checksum) is similar; it is used before function calls. It sets CCSD.JO = N, which
causes the next function call’s return address to increase by 2N bytes. For instance, the
ccscallb 8 at 400ec changes the return address after the jalr (call) instruction from 40018
to 40108, skipping over the c.ebreak block.

« ccsb and ccscallb are variations that flip the least significant bit (LSB) of the checksum
before comparing it. This is leveraged to ensure that no (checksum) argument decodes as a
jump or Xccs instruction, as detailed in Section 4.2.3. Again with Figure 4.7, the sum of the
first block up to 4000 is @xc60675e3, but that decodes as a bltu, creating a vulnerability.
The LSB is flipped to avoid this.

All Xccs instructions further trap when run at unaligned PC, which prevents most attempts at
forging them. Finally, existing CPU behavior is modified as follows when CCSD.E = 1:

1. All branch instructions trap if PC # CCSPROT. Taking a branch resets CCS and CCSPROT to 0.
2. Every other instruction traps if CCSPROT # 0.

3. Every value retrieved from a fetch is added to CCS.

4. Call instructions add 2 x CCSD.JO to the return address and clear CCSD.JO before jumping.

Hardware support in this countermeasure serves an important dual purpose. First, it limits the
reach and exploitability of potential attacks. Second, it provides a checksum update method
that’s not vulnerable to attacks, so that comparisons in Xccs instructions are reliable even if
the reference (checksum) argument is itself vulnerable.

4.2.3. Hardening algorithm ...

Algorithm 1 shows the hardening process for a single block in pseudocode, with my canonical
example in Figure 4.7. As all blocks are independent, this algorithm is executed by the compiler
for every block in the program.

The main for loop (line 15) iterates over the instructions of the original block. All instructions
are copied to the hardened block (line 26). Jump instructions are preceded by a guard, which

66

CHAPTER 4. COUNTERMEASURES AT THE LOWEST LEVELS OF SOFTWARE

Algorithm 1 Algorithm: HARDEN

Input: A (source) block [iy, ..., i,]
Input: Upper bound N for S32(k) rule (k < N)
Output: A hardened block hb.

- 4 A A o
B ST =

N —m — = A
N B AP AL

N
—_

22:
23:
24:

25:
26:

27

28:
29:

R A R A

hb < []

sum:u3p <0

offset <— 0

procedure addToBlock(i)
hb.append(1)
sum <— sum + realign(offset,uzy(i))
offset < offset + ||i]]

procedure addChecksum(i, ib)
if sum + i is not a valid checksum literal then
addToBlock(ib)
addToBlock(sum & 1)
else
addToBlock(1)
addToBlock(sum)

: foriin[iy,...,i,] do

if 1 is a jump or branch instruction then
if offset = 0 then
addToBlock(encode(nop))
else if offset = 2 [4] then
addToBlock(encode(c.nop))

if i is a function call then

addChecksum(encode(ccscall (2N + 4)),
encode(ccscallb (2N +4)))

else

addChecksum(encode(ccs), encode(ccsb))

offset < 0
addToBlock(1)

forj=1to 2N + 4 do
addToBlock(encode(c.ebreak))

return hb

> Blocks are 4-aligned.

> No empty sections.

> Force alignment.

> Jumps/branches.

> Add trap barrier.

is ccscall/ccscallb (line 22) for function calls and ccs/ccsb for other jumps (line 24). nops
are used to ensure that guards are aligned and jumps are always separated by at least one

non-jump instruction, both of which prevent subtle attacks against the countermeasure.

The second for loop (line 27) adds a barrier of c.ebreak instructions, which raise a distinctive

exception when executed. Their role is to prevent control from leaving the block by skipping

over the terminator. Up to 2N + 4 are needed to address the worst case where control reaches

the middle of a checksum whose second half is a 32-bit opcode, in which an attack of a S&R32

followed by a S32(~N) would reach 4N + 6 bytes past the checksum.

Procedure addToBlock appends instructions to the hardened block while computing the refer-

ence checksum value sum by summing instruction’s opcodes. This accounts for instructions’

4.2. A CO-DESIGNED COUNTERMEASURE 67

g: (...) # push ra to stack g: e4: 41 11 06 c6 ¢...) # push ra
PseudoCALL @f e8: 97 00 00 00 auipc ra, 0
$a@ = nsw ADDI $a0, 1 ec: ob 24 00 00 ccscall 8
(...) # pop ra from stack # v R_RISCV_CHECKSUM: g
PseudoRET $a0@ fo: oo 0o 00 00 .word 0x00000000

f4: e7 80 00 00 jalr ra, o(ra)
(a) Machine IR before back-end pass. T c.ebreak # 8 times (2N+4)
.LCCS_Region_Start@:

g: (...) # push ra 108: 05 05 c.addi a@, ao, 1
PseudoCALL @f, .LBB1_0 10a: b2 40 41 01 ¢...) # pop ra
PseudoCCSTRAP 2 10e: o1 o0 c.nhop # ccs alignment

.LCCS_Region_Starte: 110: eb 10 00 00 ccs
$a0 = nsw ADDI $a@, 1 # v R_RISCV_CHECKSUM: .LCCS_Region_Start@
(...) # pop ra 114: o0 00 00 00 .word 0x00000000
CCS .LCCS_Region_Starto 118: 82 80 c.ret
PseudoRET $a0 11a: 02 90 c.ebreak # 8 times

PseudoCCSTRAP 2
seudo (c) Object code before linking.

(b) Machine IR after back-end pass.

Figure 4.9: Stages of hardening g in our LLVM implementation (/N = 2)

alignment with the function

realign(offset,i) = {i if offset = 0 [4
’ 2160 SH(1) + MSH(i) otherwise
This process is equivalent to summing the lines of the final layout table, a fact | will prove
in Lemma 4. Finally, addChecksum selects whether to use ccs/ccscall or their -b variants.
The -b variants are selected when the checksum value is an “invalid checksum literal”, i.e. it
decodes as a jump, Xccs instruction or c. ebreak. Such values could be misused as instructions
if an attacker were to skip the guard that precedes it. Flipping the LSB ensures that these
sensitive values do not appear in code. Figure 4.7 is obtained by executing this algorithm on
both blocks of g’s original code from Figure 4.1 and linking it.

4.2.4. LLVM implementationoocooiiiiiiiiii

Algorithm 1 cannot be implemented as-is in a single pass in a standard compiler, because
reference checksum values depend on the exact bit-level encoding of each instruction, which is
not decided until the linker relocates references to globals and functions. See for instance how
the call in Figure 4.9c (before linking) has placeholder zero-offsets but the one in Figure 4.7
(after linking) has a proper target offset.

This is our first sign that the toolchain’s lowering, which is designed around functional
invariants, does not always serve security invariants well. Encodings are decided late because
they don’t matter to the compiler, which is only interested in the functional specification of
instructions. The addition of a security countermeasure to the compiler breaks this assumption.
This creates a new challenge of threading the security transform in-between functional steps

68 CHAPTER 4. COUNTERMEASURES AT THE LOWEST LEVELS OF SOFTWARE

that may not come in a suitable order. In this case, | was able to implement the algorithm in
two steps: a late Machine IR pass followed by an extension to the linker relocation process.

« Machine IR pass: the program’s Machine IR representation is first transformed late in the
back-end (from Figure 4.9a to Figure 4.9b). This pass handles all tasks that add code into
the program, including;:

— Aligning functions and blocks to 4-byte boundaries;

- Adding aligned Xccs instructions before all Machine IR instructions that expand into
RISC-V jumps, such as PseudoRET. A label indicates the start of the region that the
checksum must cover;

— Adding the trap barrier with the PseudoCCSTRAP N pseudo-instruction, which later
expands into a series of 2/V + 4 c.ebreak instructions.

At this stage some jumps are still hidden in pseudo-instructions, like the function call in
PseudoCALL. This is because far jumps in RISC-V are implemented with a pair of instructions,
auipc and a jump, to overcome the limited distance that can be encoded into single jump
instructions. In LLVM, this is expanded later in the code emitter due to limitations in the
back-end structure; | count this towards the Machine IR pass for simplicity of exposition.

The Machine IR pass is followed by static branch relaxation (which unfolds far jumps into
instruction sequences and compacts near jumps into single branches), which is the main
reason why the hardening can’t be delayed more; inserting extra code after relaxing would
break short jumps.® Section 6.2.3 will explain why this is kind of a hack on LLVM’s part.

During object file generation, the 8-byte CCS Machine IR instruction is replaced with
a 4-byte Xccs opcode and a placeholder zero-checksum. A custom relocation of type
R_RISCV_CHECKSUM (marked by a comment in Figure 4.9¢) is added to mark the checksum
region for the linker.’

« Linking: the linker follows relocation entries to compute checksums and insert them in the
provided spaces. The linker script is also updated so that hardened objects are linked to a
different virtual address (0x40000) than non-hardened libraries and runtime files (0x10000),
which tells hardware when to enable or disable Xccs protection.

VB T D TR0 EoL 10) ¢ TR

Fault’s effect on CCS updates. The countermeasure relies on CCS updates not being vulnerable
to attacks. This is a reasonable inference based on the fault model: recall that fetch skips are
induced by clock glitches, which are known to cause problems locally along critical signal
propagation paths. Alshaer et al. [Als+22] identify that such paths are mostly in the fetch
stage of the pipeline, but CCS can be updated in the execution stage using the realign sum
technique (described in Section 4.2.3), and is thus unlikely to be affected.

°| disabled linker relaxation for simplicity to maintain jumps’ alignment, but it could be enabled after adding
appropriate alignment relocations.

"The R_LRISCV_CALL relocation for auipc/jump pairs is also replaced with a custom type to notify the linker of
the newly-added ccs in the pair.

4.3. SECURITY THEOREM 69

Interrupts. Common interrupts and signal handlers (that are invisible from the main thread)
would not interfere with Xccs protections (with the only OS support needed being to save
Xccs registers, which can be viewed as an extension of PC, to the CPU context structure).
However, a non-returning interrupt (such as a signal exiting) would leave the current block
without a check. | assume such a no-returning action implies abandoning the critical section
where the interrupt occurred; otherwise, there might be a vulnerability.

Effect of faults on complex architectures. The fault model from Alshaer et al. [Als+22]
does not describe hardware responses to fault attacks during speculative or out-of-order
execution. The study and design of fault models at the micro-architectural level is already
state-of-the-art, and applying it to these complex features is a completely open problem. While
Xccs is amenable to speculative execution (mispredictions would not lead to false checksum
exceptions because the checksum resets at the beginning of every block) and out-of-order
execution (the checksum update is associative-commutative, allowing for reordering within
each block) it remains unlikely that clock glitches would affect such complex designs in the
same way as the simple processors from which fetch skips are derived.

Possibility of a hardware-only solution. Hardware-only fault countermeasures have their
own challenges [CV17]. Fault detectors [Gom+14] create a performance trade-off between
sensitivity and the rate of false alarms, and are limited to critical systems that accept the
performance loss. Detecting corruption in the instruction stream requires extra hardware
logic that risks being itself faulted. By contrast, a software/hardware proposition like Xccs
minimizes exposure to the fault because the detection only relies on CCS updates (which occur
in the execution stage, away from disrupted fetch logic) and a checksum check made after the
fault’s transient effect has subsided. (We carefully discussed the safety of these operations
with authors of [Als+22].) It also incurs costs only in critical sections and is lightweight enough
to be implemented in hardware late or during minor revisions.

Specificity of the attack model. Many (mostly early) works in fault literature attempt to
protect against all program misbehaviors, described as “soft errors”. By contrast, this targets
a single vulnerability, which might appear overly specific. However, the fetch skips model
results from extensive physical injection campaigns, where it described the impact of 80-90%
of clock and voltage glitches on Cortex-M boards [Als23], making this countermeasure useful
against common attack vectors on real boards. In addition, | argue that the lack of a precise
definition for soft errors leads to tricky vulnerabilities® preventing any proof-based security
standard from being met. Hence the focus fetch skips, for which | can prove security.

4.3. Security theorem

I’ll now state the security theorems that provide the single-fault and multi-fault security
properties for the countermeasure. The proofs are in Appendix A.

8For instance, triplication countermeasures such as SWIFT-R [CRA06] and NEMESIS [DSL17] tend to assume
that a single “soft error” only affects one of the three execution streams, but this is not true of e.g. the kind of
decoding errors mentioned in [DSL17]. | briefly outlined an attack in Section 2.3.1.

70 CHAPTER 4. COUNTERMEASURES AT THE LOWEST LEVELS OF SOFTWARE

These theorems rely on definitions of legitimate entry, executions and jumps. Intuitively, a
legitimate entry is a state that points to the beginning of a block while 0.CCS = 0 (the correct
value at the start of a block); a legitimate execution of a block is a series of steps that all take
place within the block and end in a taken jump or exit; and a legitimate jump out of a block is
a step that executes one of the block’s branch instructions.

4.3.1. Security guarantee against multi-fault executions

The main theorem states that no matter what fetch skips are injected, the execution only
proceeds if every intended checksum is passed before taking any control flow edge. The proof
of this theorem is the appendix’s Theorem 1.

Theorem (Security guarantee for multi-fault executions).

Let P a fully hardened program and e = |s,, ..., s||] an execution such that
* s is a legitimate entry into a block of P;

* 5)¢| ends successfully, returning some end ().

Then there exists a sequence [hby, ..., hb,,] of blocks of P such that

1. e can be partitioned into subsequences (s, ... sy,)1<i<m each a legitimate execution of hb;
(“t” means “top” and “b” means “bottom”);

2. Each sy, (i # m) is a legitimate jump of hb; and o0y,,.CCS is the correct che